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During sleep the brain is active but is largely isolated from sensory neurons. It is here proposed

that during sleep the mind further subdivides into isolated neuron groups. This division

decomposes imprinted experience from the waking period into pieces which then form the building

blocks for analyzing and responding to future circumstance. The approach is based on the

perspective that the central purpose of the brain is not to remember experiences, but rather to

obtain from them knowledge that will serve in future circumstances.

Modern theories of sleep suggest it serves a biological restorative function, or that sleep exists

because of a survival advantage in removing primitive man from danger.1,2 However, the existence

of dreams has motivated theories in which sleep plays an important role in psychology or how the

brain processes information.3,4 One modern framework for describing information processing by

the brain is the neural network. In this framework, Crick and Mitchinson 5,6 suggest that dreams

cause selective forgetting of undesirable or parasitic neural network states. In contrast Geszti and

Pázmándi 7 suggest dreams are a form of relearning. In these works, roles in information

processing are attributed to Rapid Eye Movement (REM) sleep, or dream sleep. The other parts of

sleep, where dreams are infrequent (non-REM sleep), are still generally believed to have a biological

role. However, total sleep deprivation causes psycho-functional, not physiological, deterioration in

humans and the primary effects occur with loss of non-REM sleep.2

In this article it is proposed that both REM and non-REM sleep play a significant role in

information processing by the brain. It is suggested that during sleep brain subdivisions are

temporarily isolated from each other. The known specificity of neurotransmitters makes it possible

selectively to 'turn-off' synapses or axons that connect between subdivisions. Such selective control
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enables isolation of the brain from sensory input even though sleep is a neurologically active state.8

The possible role of further internal dissociation of the brain appears to be discussed here for the

first time.

It is proposed that the temporary subdivision of the brain during sleep, and a selective relearning

process during this time, enables and maintains the distinct roles of different subdivisions of the

brain during waking.9 The fundamental motivation for subdivision of the brain is the need to

generalize experiences by isolating aspects that may reoccur in other contexts. Quite literally the act

of combining aspects of prior experience is directly the result of recombining states of partially

independent brain subdivisions.

It is further suggested that dissociation in sleep performs an essential restorative function.

Neural networks fail catastrophically when overloaded. Selective relearning also results in a

selective forgetting of information that prevents overload failure. Experimental observation of

psycho-functional failure after sleep deprivation,2 which prevents this restorative function, may be

directly related to overload failure.

Consequences of this discussion are far reaching both for public policy and progress in

understanding brain function and disorders. Public attitudes, and corporate behavior, motivated by

or motivating scientific thought often proceeds on the assumption that sleep is a waste of time. In

contrast, these proposals suggest that well-balanced sleep schedules are of central importance in

human functioning not only for the short term effects of sleep deprivation but for its long term

effects. Moreover, the temporary subdivision of the brain and selective relearning may provide a

step towards understanding mechanisms of pattern recognition, the 'logic' of human language and

the ability of separate parts of the brain to function coherently. Finally, it provides predictions that

can be tested by the new techniques currently available for mapping regional brain activity.

This article is arranged as follows. First, the conventional neural model of adaptive learning is

reviewed. The existence of brain subdivision is motivated within the neural model. The problem of

neural network overload and the impact of selective relearning is discussed. The role of temporary

dissociation and the purpose of different levels of sleep are described. The impact of sleep



3

deprivation and other malfunctions of the sleep process are presented. Finally, it is suggested that

the role of sleep provides an intrinsic basis for human individuality.

The neural model

In the conventional model of neural networks, the brain is composed of neurons that can be in

an excited or passive state. Neurons affect the activity of other neurons through synaptic

connections. The 'state of the mind' at any time is described by the activity pattern of the neurons.

This activity pattern evolves in time because the activity of each neuron is determined by the activity

of all neurons at an earlier time and the excitatory or inhibitory synapses between them. During

waking hours, sensory information directly affects sensory neurons and, therefore, in part

determines the state of neuron excitation throughout the brain. Actions are the result of motor

neuron activity and, therefore, also reflect the state of neuron excitation. A substantial part of

synaptic connections are 'hard-wired' performing functions that are pre-specified. However,

synaptic strengths are also affected by the state of neuronal excitation. This influence constitutes a

basic step in learning called imprinting originally proposed by Hebb in 1949.

In theoretical models,10 ,11  an imprinted pattern of neural excitations can be recovered if a

sufficiently large part of the pattern is re-imposed on the neurons. Evolving the activity pattern then

causes the complete original imprinted pattern to be recovered. This is an associative memory which

associates the restored pattern to the part-of-it that was imposed. Such neural networks are also

considered to be capable of generalization. This capability arises because the region of 'possible

experiences' near a particular memory evolves by neural dynamics to the memory. This region,

called its basin-of-attraction, becomes a generalization of the memory.

Why brain subdivision?

It is generally accepted that the storage capacity of a neural network increases with the degree of

interconnectedness. For a network where each neuron is connected to every other neuron the

number of imprints that can be recalled N is proportional to the number of neurons N with a

constant of proportionality  somewhat dependent on the particular imprinting rule. When
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additional imprints are added an overload catastrophe causes erasure of all information.10

Subdivision inherently results in a decreased storage capacity. Why then subdivide the brain?

An illustrative example of the subdivided function of the brain is found in vision.  Vision begins

with a continuous field of light on the retina. However, we describe the image using object

attributes: color, shape and movement. In the vision system information that is relevant to each of

the attribute categories is mapped to a distinct part of the brain. For example, color is separated

from the details of shape and movement and routed to one part of the brain. This part of the brain is

then responsible for 'recognizing' colors. In this system the number of distinct images that may be

stored is the product of the number of colors, shapes and movements. Considering the total number

of neurons  the number of neurons in a subdivision is roughly αN/3 and the number of distinct

images that may be stored is (αN/3)3. This is useful because color, shape and motion occur in

various combinations because they are largely independent of each other. More generally, the

effective storage of information grows exponentially (αN/q)q with q brain subdivisions.

Logic of natural language

The subdivided functioning of the brain may be recognized in the artificial world of 'natural'

language. Consider a network large enough to be subdivided into three networks each of which can

store three words (coded appropriately). A complete network would then be able to store nine

sentences with three words each since the storage capacity grows linearly with size. On the

subdivided network we could imprint three sentences and twenty-seven sentences would be

recognized (see Fig. 1).

The central difference between the set of sentences that can be remembered by the full network

and the subdivided network may be summarized by the notion of 'content' vs. 'grammar.' The

complete network knows more full sentences but does not have knowledge of the divisibility of the

sentences into parts that can be put together in different ways. The subdivided network knows the

parts but has no relationship between them, thus it knows grammar but does not know any context

information, like who it is that fell.
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Clearly the actual process in the human brain is a combination of the two, where sentences make

sense or are 'grammatically correct' if properly put together out of largely interchangeable parts, but

an actual event or recalled incident is a specific combination. This can be captured in the network by

having a partial interconnection between subnetworks.

Simulations have been performed to test these ideas.12  For example (see Fig. 2), a network with

100 neurons using conventional Hebbian imprinting can store approximately 12 images.

Subdividing it into four equal subdivisions results in a storage capacity of roughly three to four

sub-images and this is comparable to the storage capability of the divided network for complete

images. However the number of combinations of sub-images is nearly 400. If the strength of

interconnecting synapses is set at 0.2 of the strength of sub-network connections, 6 full imprints

can be stored and 60 combinations. Thus it is possible to achieve a balance between recall of

complete states and independent parts.

Having motivated the existence of subdivision, we must now address the problem of overload.

Mental capacity and overload

An overloaded network fails catastrophically. As the number of imprints on a neural network

increases the basins-of-attraction of each decreases. In addition, spurious states composed of pieces

of different imprints arise that are also stable and compete with the real memories. Catastrophic

failure of the network occurs when the spurious states dominate and the real memories cannot be

recalled. A variety of phenomena accompany this transition that is known to be analogous to a

'spin-glass' transition13  and which shares some qualitative features with the usual transition of a

liquid to a glass. Thus not only do the memories become irretrievable, but the barriers to changes in

the state of the neural network become insurmountable -- resulting in a locking of the neural state.

In order to avoid overload failure a process whereby information is erased is necessary. A

storage device that selectively retains recent memories is known as a palimpsest. Several models for

neural-network palimpsests have been proposed. An approach to selective memory retention better

suited for understanding sleep is selective relearning.7 Strictly, it is not a palimpsest because the

retention of memories is not determined solely by order of imprint. It is important to understand the
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tradeoff between the strength of a memory (the size of its basin-of-attraction) and the number of

memories that can be stored. The objective is to increase the basin-of-attraction of some memories

at the expense of others. To strengthen prior imprints selectively it is necessary to retrieve some of

the imprinted activity patterns and reimprint them. Recovery of the imprinted states may be achieved

by use of the network itself. Starting from random activity patterns, evolution recovers previously

imprinted states. The randomness indicates that the selection of memories has some degree of

chance. Moreover this procedure sometimes recovers spurious states. Nevertheless, reimprinting the

result is effective in selective reinforcement of memories.

Simulations demonstrate the effectiveness of this process as a selective filter on memories. In a

test case (see Fig. 3), a network with 100 neurons was first imprinted with 8 images. Then four

random starting points were evolved to stable states. After imprinting these states it was found that

on average two stored memories were strengthened at the expense of the others, which were

destabilized. Two memories rather than four are reinforced because duplicate reinforcements of the

same memory occur and in other cases spurious states are reinforced. Significantly, the process of

recovering imprinted memories is a delicate one and it was found important to include a measured

amount of noise that promotes the recovery of imprinted images. This use of noise is analogous to

its use in avoiding shallow local minima in a minimization problem.10

Subdivision and selective relearning

The motivation for brain subdivision and the relearning procedure may now be combined into a

model for the phenomenon of sleep as a temporary dissociation with relearning.

To simplify the discussion of temporary dissociation, hard-wired connections may be separated

from adaptive synapses. Thus, it is assumed that sensory information is mapped by a hard-wired

neural network onto a second network containing adaptive synapses. It is further assumed that there

are several mappings which perform different operations on sensory information before affecting

the neurons of the adaptive network. For vision, one mapping may highlight edges by performing a

second-order difference of intensities, another highlights motion by taking temporal or delayed

differences, a third extracts only general color information.9
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During waking the network is imprinted with multiple images. Then while asleep, the network is

temporarily subdivided by diminishing the strength of synapses that run between subnetworks.

While the subnetworks are dissociated a selective relearning process occurs. Starting from random

excitations the neural evolution recovers previously learned information, which is then re-imprinted.

As a direct result other memories are diminished in strength. Finally, the strength of inter-sub-

network synapses are restored but at a reduced level.

In contrast to conventional artificial networks, the objective of this model of brain function is not

to recall each imprint. Relearning emphasizes (1) the memories with largest basins-of-attraction, and

(2) the most different memories. Minor deviations or details in standard elements are forgotten, and

connections between imprints on different subdivisions are preferentially weakened. By

strengthening the basins of each subnetwork separately, these basins continue to be relevant to the

description of the subnetwork state even after it is reconnected to the rest of the network during

waking. As shown by the simulations, this enables subnetwork imprints to be put together in new

ways. Since the process of dissociation and relearning is incremental, recent imprints (experiences)

should be remembered in full, while earlier imprints become progressively decomposed into

elements.  

Sleep as dissociation

Sleep is known to be have several levels identified by different brain electrical signals (EEG).

There are five recognized levels, the two deepest being Slow Wave Sleep (SWS) while the

shallowest is Rapid Eye Movement (REM) Sleep. Typically, in the first part of sleep, the deepest

level is reached rapidly. Then the level of sleep alternates in a pattern of shallower and deeper levels

with the average level becoming shallower as sleep progresses.

The stages of sleep are here suggested to correspond to levels of connectedness between

subdivisions of the brain. SWS corresponds to the greatest dissociation where small neuron groups

function independently of each other. At shallower levels of sleep larger groups of neurons are

connected and the waking state is a fully connected state, when sensory and motor neurons are

connected.
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REM sleep has attracted much interest because of the frequency of recalled dreams upon

waking. During REM sleep there is an internal triggering of neuron excitation that may simulate

sensory input. If dreams are simply response to simulated sensory information, REM sleep would

correspond to an internally connected network weakly connected to sensory and motor neurons.9

The often bizarre content of dreams may follow from the triggering that simulates sensory input.

However, it has been remarked that higher level critical faculties and a "sense-of-self" are absent

from dreams. This is similar to the waking mental functioning of post-lobotomy patients,

suggesting that major subdivisions are present in REM sleep.14  The existence of subdivisions may

also explain why most dreams are not remembered, since the connections between neural

subdivisions are weakened, and the elements present in each subdivision will be mutually

incompatible to the waking brain. For deeper levels of sleep with smaller subdivisions, the waking

brain can make no coherent picture of the sleeping mental state.

According to this theory there is a distinct architecture of the brain composed of at least three

and up to five levels of subdivision. Sleep is thus a largely genetically programmed mechanism for

maintaining a specific subdivided architecture of the brain. In order to be effective, the subdivisions

must be consistent between different sleep episodes. Interconnection strengths at different levels are

balanced by the duration of dissociation at a particular level. Feedback control may be used to

balance the independence and interactions of subdivisions. This control is important to ensure that

during waking the brain functions in a coherent fashion so that response is a collective function of

the component parts.

Overload and sleep deprivation

While the longer term effects of sleep deprivation directly affect the architecture of the brain, the

first manifestation of sleep deprivation should be overload failure. In a subdivided architecture,

overload occurs in parts of the network rather than the network as a whole. Key to understanding

the phenomenon of overload failure is dynamic locking described earlier -- an inability to shift from

an existing state to a properly functioning state when stimulus changes.
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Direct experimental verification of this result is found in the well studied 'vigilance' test, one of

the tests most sensitive to sleep deprivation.2 In this test after a period of similar signals, a slightly

different signal requires a very different response. The inability to change behavior is not only of

experimental interest but is also understood to be responsible for many early morning accidents. A

second example is that of visual illusions such as blurred or wavy objects, e.g. a double floor. This

may be understood as due to a locking of parts of the brain responsible for receiving the visual

signal causing distortions during movement.

One particularly interesting observation is the presence of so-called 'micro-sleeps' in sleep-

deprived individuals.2 These consist of short lapses in responsiveness. These may actually not be

sleep, but rather temporary suspension of effective brain activity due to locking.

Comparisons have been made (both similarities and differences) between extreme aspects of the

behavior of a sleep-deprived individual and a psychotic individual. It is not difficult to believe that

disorders in the mechanism of sleep may be responsible for or contribute to psychosis.

Experimentally, a correlation has been made between sleep disorders and both schizophrenia and

severe depression. The severe lack of SWS sleep in 50% of schizophrenic individuals2 may be

interpreted as leading to a loss of ability to separate distinct information processing tasks.

While excessive sleep does not lead to a dramatic failure such as neural locking, it may also lead

to poor functioning through excessive forgetting and dissociation of parts of the brain. Such

excessive dissociation may have both physiologic and psycho-functional manifestations.

Non-Universal Computation

The design of modern computers relies upon models that perform all computational tasks. In

contrast, the subdivided architecture of the human mind is a non-universal strategy. There are many

possible filters of sensory data and many ways of mapping them on subdivisions of the brain. The

subdivisions are connected to each other in varying degrees according to how far apart they are in

the sleep determined hierarchy. Weaker connections exist between subdivisions reconnected at

shallower levels of sleep from those at deeper levels. It should be apparent that different choices of

filters and arrangements will be preferentially suited for different tasks. This non-universal strategy
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is consistent with the uniqueness of individuals for which science has found little justification.

Sleep controls the architecture rather than the information contained. This suggests a novel

approach to the balance of genetic and environmental influence on human behavior.   
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1Figure Captions:

Figure 1: Illustration of subdivided network concept using natural language example. A fully

connected network with enough neurons to store exactly nine sentences shown on the left may be

imprinted with and recognize these sentences. If the network is divided into three parts it may be

imprinted with only three sentences (center). However, because each subnetwork functions

independently, all possible twenty-seven combinations of words shown to the right are recognized.

Comparing left and right columns suggests the difference between content and grammar in sentence

construction.

Figure 2: Illustration of subdivided network concept using a simulation of Hebbian imprinting.

The horizontal axis is the number of imprinted states. The vertical axis is the number of recalled

states (note logarithmic scale). Networks tested contained 100 neurons partially subdivided into

four equal subdivisions. Distinct curves are for different degrees of subdivision resulting from

weakening synapses interconnecting between subdivisions by the factor indicated. The curve

marked "0" is for a completely subdivided network while the curve marked "1" is for a fully

connected network. The recalled states are all fixed points of the network dynamics composed of

combinations of substates imprinted on each subnetwork. As in Fig. 1 subdivision causes more

states to be recognized from fewer imprints.

Figure 3: Illustration of the effectiveness of a relearning procedure in causing a selective

reinforcement and forgetting of prior imprints. The figure shows the number of imprinted states

that have basins-of-attraction larger than the horizontal axis value. Four cases are shown. All cases

start with eight imprinted states on a network with 100 neurons shown as (a). (b) shows the result

of reimprinting four of the original eight states causing four to be strengthened (larger basins-of-

attraction) at the expense of weakening the others. (c) shows the result of starting from a random

neural state evolving the neural state and imprinting the result on the network. (d) shows the same

as (c) with the addition of a measured (optimized) amount of noise during evolution. In (c)

approximately 1.5 of the original states are reinforced while in (d) 2 are reinforced.
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Big Bob ran. Big Bob ran. Big Bob ran.
Kind John ate. Kind John ate. Big Bob ate.
Tall Susan fell. Tall Susan fell. Big Bob fell.
Bad Sam sat. Big John ran.
Sad Pat went. Big John ate.
Small Tom jumped. Big John fell.
Happy Nate gave. Big Susan ran.
Mad Dave took. Big Susan ate.

Big Susan fell.
Kind Bob ran.
Kind Bob ate.
Kind Bob fell.
Kind John ran.
Kind John ate.
Kind John fell.
Kind Susan ran.
Kind Susan ate.
Kind Susan fell.
Tall Bob ran.
Tall Bob ate.
Tall Bob fell.
Tall John ran.
Tall John ate.
Tall John fell.
Tall Susan ran.
Tall Susan ate.
Tall Susan fel l .

Figure 1
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