
388 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Letter___

Resource Sharing and Coevolution in Evolving
Cellular Automata

Justin Werfel, Melanie Mitchell, and James P. Crutchfield

Abstract—Coevolution, between a population of candidate solutions
and a population of test cases, has received increasing attention as a
promising biologically inspired method for improving the performance
of evolutionary computation techniques. However, the results of studies
of coevolution have been mixed. One of the seemingly more impressive
results to date was the improvement via coevolution demonstrated by
Juillé and Pollack on evolving cellular automata to perform a classification
task. Their study, however, like most other studies on coevolution, did
not investigate the mechanisms giving rise to the observed improvements.
In this paper, we probe more deeply into the reasons for these observed
improvements and present empirical evidence that, in contrast to what
was claimed by Juillé and Pollack, much of the improvement seen was due
to their “resource sharing” technique rather than to coevolution. We also
present empirical evidence that resource sharing works, at least in part,
by preserving diversity in the population.

Index Terms—Cellular automata, cooperative systems, distributed deci-
sion making, genetic algorithms, pattern classification.

I. INTRODUCTION

Using evolutionary algorithms to design problem-solving strategies
often involves the use oftest casesto estimate fitness, since the space
of possible problems is typically too large to evaluate a given strategy’s
performance exhaustively. An important issue for improving statistical
estimates of fitness in such situations is determining how to sample test
cases and how to weight their contribution to fitness estimates. This is
particularly significant if one wishes to avoid premature convergence,
in which a mediocre solution strategy with no nearby fitter variants
takes over the population and prevents the emergence of better solu-
tions.

Techniques that have been proposed to ameliorate this difficulty in-
cludeshared sampling, in which test cases are chosen so as to be un-
solvable by as many of the strategies in the population as possible [16],
[17]; competitive fitness functions, in which a tournament-style selec-
tion scheme determines that one strategy is fitter than another if the
number of test cases solved by the first, but not by the second, is greater
than the number solved by the second, but not by the first [8]; andre-
source-sharing fitness functions, in which strategies receive a higher
fitness if they are able to solve test cases that are unsolvable by a large
fraction of other strategies. Resource sharing has produced promising
results on a number of tasks [7], [8], [16], [17].

The motivation behind resource sharing is to promote diversity, by
rewarding strategies that can solve test cases that few other strategies

Manuscript received July 26, 1999; revised February 28, 2000. This work was
supported by the Santa Fe Institute, by the National Science Foundation under
Grant PHY-9531317 (Research Experiences for Undergraduates) and Grant IIS-
9705830, and by the Keck Foundation under Grant 98-1677.

J. Werfel is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: jkwerfel@mit.edu).

M. Mitchell is with the Biophysics Group, Los Alamos National Laboratory,
Los Alamos, NM 87545 USA.

J. P. Crutchfield is with the Santa Fe Institute, Santa Fe, NM 87501 USA.
Publisher Item Identifier S 1089-778X(00)10460-6.

also are able to solve. In this way, strategies receive less payoff for
pursuing approaches that put them into “niches” already heavily occu-
pied. Instead, they are encouraged to explore new approaches, partic-
ularly those which allow solving test cases that the rest of the popula-
tion finds difficult. Presumably, the population ends up more spread out
over the space of possible strategies. In other words, resource sharing
is intended to preserve diversity, to prevent mediocre solutions from
taking over the population, and to make more likely the emergence of
exceptional new strategies through recombinations of dissimilar, pre-
viously discovered strategies.

Another technique that has been proposed to improve the strategies
discovered by evolutionary search methods is that of coevolution, as
introduced by Hillis [5]. Any particular static method for generating
test cases can strongly bias the evolutionary course of strategies and
produce over-fitting to the class of test cases that are generated. More-
over, there appears to be no single best static method. If the test cases
are too easy, there is no strong pressure for high-performance strate-
gies to emerge; if the test cases are too hard, then all low-performance
strategies appear equally poor, reducing fitness variance, and evolution
cannot proceed.

In a coevolutionary scheme, a population of test cases is maintained
and evolves along with the evolving population of strategies. The fit-
ness of a strategy is then some function of the number of test cases
it is able to solve, and the fitness of a test case is some inverse func-
tion of the number of strategies that are able to solve it, often with
some penalty for being too difficult a test. The desired effect is that the
test-case population will evolve so as to present an incrementally in-
creasing but appropriate level of difficulty for the evolving population
that forces strategies to become successively more capable of solving
hard problems.

Past work by Paredis [15], in accord with our own earlier investiga-
tions, showed that a straightforward version of coevolution, on its own,
fails to produce high-performing strategies for a cellular-automaton
task investigated earlier by Packard [14] and Crutchfieldet al. [1],
[4], [11]. These researchers used genetic algorithms (GAs) to evolve
one-dimensional, two-state cellular automata (CAs) to perform a clas-
sification task. This type of CA consists of a one-dimensional lattice of
cells, each of which can be in state 0 or 1 at a given time step. The lattice
starts out with an initial configuration of states, and, at each time step,
each cell updates its state depending on its current state and the states
of its neighboring cells. In Packard’s and Crutchfieldet al.’s studies,
the “neighboring cells” of a cell were defined to be the three cells on
either side of the cell. Thus, each neighborhood contained seven cells.
The update rules can be given as a look-up table (“rule table”), con-
taining all possible configurations of seven cells and the associated up-
date state for the center cell in each configuration. Any given rule table
can be specified uniquely by ordering the entries in lexicographic order
of neighborhood configuration (0000000 to 1111111) and then listing
the27 = 128 update states in this order. This produces a bit string of
length 128. These bit strings were the individuals in the GAs popula-
tion.

Following [1], [4], [11], and [14], Paredis evolved cellular automata
to perform a density classification task, in which an initial configuration
of the CA lattice consisting of 1s and 0s was to be classified as “high-
density” or “low-density” depending on whether or not it contained a

1089–778X/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 389

majority of 1s. (The density of an initial configuration is defined as the
fraction of 1s in that configuration.) A “high-density” classification was
represented by the CA reaching a fixed point of all 1s, a “low-density”
classification by a fixed point of all 0s. In this task, the “strategies” are
CA rule tables and the “test cases” are initial configurations of a CA
lattice.

In [15], a populationPCA of cellular automaton rule tables, encoded
as bit strings, coevolved with a populationPtest of initial-configura-
tion test cases, also encoded as bit strings. The fitness of a CA rule
table was calculated by running the corresponding cellular automaton
(with a lattice of 149 cells) on each initial configuration inPtest, and
determining the number of these initial configurations that it classified
correctly. The fitness of each test case was the number of CA rule tables
in PCA that classified itincorrectly. Paredis found that the two popu-
lations entered temporal oscillations, in which each in turn performed
well against the other population. The individuals in both populations,
however, performed poorly against opponents chosen from outside the
populations.

Combinations of different approaches for improving performance
often work better than each approach alone [17]. In particular, Juillé
and Pollack [9], [10] investigated a combination of coevolution and re-
source sharing in the evolving cellular automata framework described
above, and found that the use of both techniques together led to the
production of significantly better CA strategies than did the use of a
standard GA. They attributed this success to the effectiveness of co-
evolution.

Since the version of coevolution studied by Paredis [15] has been
shown not to produce effective strategies for this problem when used
alone, it seems natural to ask whether the success in [9] and [10] is
due more to coevolution or to resource sharing, or to the particular
combination of the two.

It should be noted that the results of both Paredis [15] and Juillé and
Pollack [9], [10], as well as the new results we present below, were ob-
tained in the context of the evolving cellular automaton framework and
have not yet been generalized to other problems. This framework, how-
ever, was designed to be general in that it captures the important fea-
tures of evolving systems in which global coordination emerges when
only local interactions are possible. In addition, this framework has
been found to have a number of features common to a wide class of evo-
lutionary systems, including moderate-to-high degrees of epistatic in-
teractions among loci, identifiable “building blocks” that contribute to
high-fitness solutions, a demonstratable advantage for crossover versus
mutation alone, and metastable periods of fitness stasis punctuated by
rapid periods of innovation [2], [12], [19]. Moreover, these features
have been shown to generalize to other cellular-automaton tasks be-
yond one-dimensional density classification [3], [13]. The generality
of these features will, we believe, allow the results of research in this
framework to inform work on a wider class of evolving systems. Thus,
we believe the results in [9], [10], [15], as well as our results described
below on coevolution and resource sharing, will have implications be-
yond the evolving cellular automaton framework.

II. M ETHODS

In [1], [4], and [11], a GA was used to evolve cellular automaton rule
tables (strategies) to perform the density classification task described
above. The fitness of each strategy was a function of its classification
performance on a random sample of test cases: initial configurations
(ICs) of the CA lattice. The classification performance was defined
as the fraction of ICs in a training sample or test sample that were

correctly classified. The ultimate success of the GA was measured in
two ways: 1) TheperformancesPN of the best evolved strategies—the
fraction of correct classifications onN randomly generated test cases.
For the results reported here, we usedP10 . 2) The GAssearch effi-
ciencyEs—the percentage of runs on which at least one instance of a
given type of strategys was evolved.

In [1], [4], and [11] we identified three classes of CA computational
strategys evolved by the GA.

• Default: The CA always iterates to all 1s or all 0s.
• Block-expanding:The CA always iterates to all 0s (1s), unless

there is a sufficiently large block of 1s (0s) in the IC, in which
case that block grows until it fills the lattice.

• Particle: The CA uses localized moving signals—“parti-
cles”—and their collisions to transfer and combine information
from different parts of the IC.

These classes were identified on the basis of bothPN and by exten-
sive analysis of space-time patterns produced by the CAs of each type.
Only the particle strategies resulted in high performance and general-
ized well to large lattice sizes; only the particle strategies are examples
of what we would want to call sophisticated collective computation
emerging from local rules.

The three different strategies were distinguished easily by the per-
formanceP they generated: on 149-cell lattices (the size used in the
experiments reported here) the default strategies hadP = 0:5, the
block-expanding strategies had approximately0:6 < P < 0:68, and
the particle strategies hadP � 0:7. A small number ofhigh-perfor-
mance particlestrategies evolved withP � 0:8. As the lattice size
was increased, the performance of block-expanding strategies quickly
went down to approximately 0.5, whereas the performance of particle
strategies declined much more slowly. The space-time behavior of the
high-performance particle strategies was qualitatively similar to that
of the lower-performance particle strategies; why the former’s perfor-
mance was higher is still an open question.

In [4], Eparticle was approximately 3%. For reference, we note that,
to date, the best known CAs for density classification, evolved or de-
signed by hand, have performances approximately0:8 � P10 � 0:86

on 149-cell lattices.
Juillé and Pollack [9], [10] showed that a particular combined

form of resource sharing and coevolution resulted in higher perfor-
mances (up toP � 0:86) and high-performance search efficiencies
(Eparticle > 30%) [6] than were found in earlier evolving cellular
automata experiments.

For comparison, Paredis’s version of coevolution [15] alone pro-
duced only low-performance CAs that did no better than default strate-
gies and had search efficienciesEparticle = 0%—substantially worse
than that of a GA without coevolution. To investigate what aspects of
Juillé and Pollack’s method were responsible for the improved perfor-
mance and search efficiency, we performed a series of experiments to
replicate their results and analyze them more deeply than was reported
in [9] and [10].

The experiments described here used GA and CA parameters,
resource sharing fitness functions, and a coevolution scheme similar
to those of [9] and [10], and identical to those of a followup study by
Juillé [6]. The populations of CAs and ICs each had 200 members. The
CAs were tested on 149-cell lattices. We performed four experiments,
each consisting of 50 GA runs initiated with independent random
number seeds, where each run consisted of 1000 generations. The
experiments evaluated four search techniques: 1) GA: the GA alone,
with neither resource sharing nor coevolution, with ICs drawn at each
generation from a density-uniform distribution (i.e., a probability

390 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

distribution which is uniform with respect to IC density)1 2; 2) GA+C:
the GA with coevolution only, with ICs initially drawn at each
generation from a density-uniform distribution and allowed to evolve
thereafter; 3) GA+RS: the GA with resource sharing only, with ICs
drawn at each generation from a density-uniform distribution; and 4)
GA+RS+C: the GA with resource sharing and coevolution combined,
with ICs initially drawn from a density-uniform distribution and
allowed to evolve thereafter.

In the GA without resource sharing, the fitness function for a CA
was simply the number of ICs it was able to classify correctly:

f(CAi) =

N

j=1

correct(CAi; ICj)

where NIC was the number of ICs in the population, and
correct(CAk; ICj) was one if the kth CA correctly classified
thejth IC and 0 otherwise.

When coevolution was used without resource sharing, the fitness
function for ICs was defined analogously, with the addition of a term
E(CAi; �(ICj)) to lower artificially the fitnesses of especially diffi-
cult ICs with densities near� = 1=2

E(CAi; �(ICj)) = ln(2) + p ln(p) + (1� p) ln(1� p)

wherep was the probability that theith CA could solve a randomly
generated IC of density�(ICj), the density of thejth IC. The IC fitness
function was then

f(ICj) =

N

i=1

E(CAi; �(ICj)) � (1� correct(CAi; ICj)):

When resource sharing was used without coevolution, ICs did not
evolve, but were generated at each generation from a density-uniform
distribution. For the purpose of calculating CA fitnesses, each IC was
assigned a weight based on how many CAs it defeated:

WIC =
1

N

k=1

correct(CAk; ICj)

:

Each CA then was assigned a fitness, according to which ICs it could
solve, based on those weights:

f(CAi) =

N

j=1

WIC � correct(CAi; ICj):

In this way, a limited fitness resource, equal to the total number of ICs
in the population which was divided up among all CAs.

When coevolution was used with resource sharing, CA weights and
IC fitnesses were defined analogously:

WCA =
1

N

k=1

E(CAi; �(ICk)) � (1� correct(CAi; ICk))

f(ICj) =

N

i=1

WCA � E(CAi; �(ICj)) � (1� correct(CAi; ICj)):

CAi was considered to have classified correctly ICj if, after a max-
imum of 2:15 � 149 successive applications of the CA rule, CAi had

1The density-uniform distribution can be contrasted with the binomially dis-
tributed densities of ICs generated by choosing each bit randomly, as is done
when calculatingP . The latter produces a distribution of densities strongly
peaked around 0.5—the hardest cases to classify. Using the density-uniform
distribution to generate ICs for evaluating fitness markedly improved the GAs
success in all cases where ICs are chosen from a distribution.

2The same algorithm was used in [1], [2], and [4], but with smaller values
for population size and number of generations, and consequently lower search
efficiencies.

TABLE I
STATISTICS FOR THEEVOLUTIONARY EMERGENCE OFCAs WITH

DIFFERENTSTRATEGIES

Block-expanding (here defined as0:65 < P < 0:7, particleP � 0:7),

and particle+ (P � 0:8). The four main rows give results for four experiments

of 50 runs each: “GA” refers to the GA alone, “GA+C” refers to the GA with

coevolution only, “GA+RS” refers to the GA with resource sharing only, and

“GA+RS+C” refers to the GAwith resource sharing and coevolution. Search

efficiencyE is given for each CA strategys over the 50 runs of each experiment.

t is the mean number of generations to first occurrence of strategys across the

50 runs.� is the standard deviation int measured across the runs.h _di is the

rate of change in population diversityhdi (quoted in bits per 1000 generations).

� is the standard deviation of the fluctuation inhdi about the best-fit line

estimated in the least-squares fits of Fig. 1(a)–(d).

reached a fixed point of all 1s if�(ICj) > 0:5 and a fixed point of all
0s otherwise. (The case�(ICj) = 0:5 was not possible on a lattice of
149 cells.)

The initial population of CAs was drawn from a uniform distribu-
tion over the density of the 128-bit update rule (i.e., all densities were
equally likely). The elite CAs (fittest 20%) each generation survived
to the next; 60% of the new generation was created from single-point
crossovers between pairs of randomly chosen elite individuals, with
mutation probability 0.02 per bit; 20% was created by copying single
elite chosen randomly (with replacement) with mutation probability
0.02 per bit. Mutation flipped the bit at the chosen locus.

With coevolution, the evolving IC population was represented as a
set of densities rather than specific ICs; each generation, a new set of
ICs was generated with the specified densities. At each generation, 97%
of the IC population survived intact, with the remaining 3% chosen
from a density-uniform distribution. As in Juillé and Pollack’s experi-
ments, no crossover or mutation was applied to the IC population.

As described above, the performanceP10 of a CA, evaluated after
a run, was defined as the fraction it classified correctly of 10 000 ICs
drawn at random from an unbiased distribution (i.e., each cell in each
IC had an equal probability of being 0 or 1).

III. RESULTS

For each experiment, we recorded the number of runs in which
block-expanding, particle, and high-performance particle strategies
(“particle+”) were discovered and the mean number of generations it
took to discover each strategy.

The search efficiencyEs and the mean generation of first occurrence
ts for each strategy are given in Table I. The standard deviation�t of
ts across the 50 runs of each alternative GA is also reported there.

The results for GA+RS and GA+RS+C agree, within statistical
uncertainty, with results found by Juillé [6].

As expected from [15], runs with coevolution alone almost never
produced particle strategies (P10 > 0:7). In addition, the use of co-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 391

Fig. 1. Average pairwise Hamming distancehdi over time for single GA runs with (a) neither resource sharing nor coevolution, (b) coevolution alone, (c) resource
sharing alone, and (d) resource sharing and coevolution.hdi is large(�64) during the initial generations, and so these data points do not appear on the scales plotted.
The straight lines show the trends in population diversity. They are least-squares fits over stationary fitness epochs in the population dynamics. The estimated slopes
h _di of the lines and the standard deviations� of fluctuations about them are quoted in Table I. The runs shown here are examples of those that evolved particle
strategies under each alternative GA.

evolution increases the average time taken by the GA to find even
low-performance, block-expanding strategies (e.g.,ts = 104, rather
than 14), and likewise increases the variance in that time (�t = 133,
rather than 6).

Runs with resource sharing produce CAs with high performance
more consistently across runs than does the GA alone (Eparticle = 43%,
rather than 29%). Moreover, runs with resource sharing tend to take
longer (ts = 33, rather than 14) to find block-expanding CAs. They
also vary more (�t = 63, rather than 6) in how long they take to do
so.

Comparing runs using both resource sharing and coevolution to
those using resource sharing alone, the addition of coevolution appears
to heighten the effects of resource sharing. Runs using both techniques
take longer (ts � 84 rather than 33) to find block-expanding CAs,
vary more in how long it takes them to do so (�t � 157 rather than
63), and find particle CAs more frequently (e.g.,Eparticle = 47%
rather than 43%, andEparticle+ = 27% rather than 10%), than do runs
with resource sharing alone.

By contrast, comparing runs with resource sharing and coevolution
to those with coevolution alone and to those with neither, we see that
coevolution has entirely different effects in the presence or absence of
resource sharing. Coevolution alone greatly decreases the effectiveness
of the basic GA in discovering high-performance CA rules, while, if
resource sharing is also present, the success of the GA in discovering
high-performance rules is improved considerably.

As an aside, note that the large variances�t in mean time to find a
given strategy are typical of and to be expected in evolutionary search
algorithms. The nature of such fluctuations is discussed in [18]. What
is notable here is that, for the discovery of particle strategies, the GA
using resource sharing has much less variation than seen in the GA
alone. The addition of coevolution to resource sharing appears to have
little (beneficial) effect in reducing the variations for the appearance
times of particle CAs. In fact, in reaching high-performance particle
CAs, the addition of coevolution roughly doubles the variance ints.

In short, for increased efficiency in finding particle strategies, the dif-
ferences between resource sharing with coevolution (GA+RS+C) and
resource sharing alone (GA+RS) are much less pronounced than the
corresponding differences between GA+RS and GA+C, and between
GA+RS and GA. What the addition of coevolution does most clearly is
improve the search efficiency for high-performance particle strategies,
and that only in the presence of resource sharing. Thus, while Juillé and
Pollack [9], [10] attributed all the improvements they observed to the
addition of coevolution, our results make it clear that resource sharing
plays a major, if notthemajor role, in producing these improvements.

IV. THE OPERATION OFRESOURCESHARING

We also investigated whether the effectiveness of resource sharing is
actually due, as was intended in its design, to a preservation of diversity
in the GA population, or whether its success results from some other
mechanism entirely.

392 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

One rough measure of diversity in a population is the average pair-
wise Hamming distancehdi. The Hamming distanced between two
CAs is simply the number of bits by which the genetic specification of
their rule tables differ. CAs with different strategies are likely to differ
in more bits and, thus, to be separated by a greater Hamming distance
than CAs with similar strategies. When averaged over the population,
hdi is greater if a population is more strategically diverse overall and
its members are more spread out across the genotype space.3

To give a sense of the scale of Hamming distances here, recall that a
CAs rule table is specified by27 = 128 binary update states. Thus,0 �
hdi � 128. Since the initial CA population was initialized randomly,
hdi � 128=2 = 64 bits at the start of a run.

Fig. 1 showshdi at each generation for sample runs that evolved
high-fitness particle-based CAs with (a) neither resource sharing nor
coevolution, (b) coevolution alone, (c) resource sharing alone, and (d)
both techniques. In all cases, as expected,hdi starts out at approxi-
mately 64 and then quickly decreases over a few generations, as the
fittest CAs and their descendants take over the population, which set-
tles down to CAs with similar strategies.

Beyond this transient phase, over each runhdi fluctuates about 10%
to 20% as evolution progresses. Nonetheless, as the plots show, each
run does follow an overall trend in population diversity. We measured
these trends, using a least-squares fit to estimate the average rate of
change in population diversity,h _di. We also estimated the standard de-
viation�hdi of fluctuations inhdi about the fit. Both estimates for each
run are reported in Table I . Since such trends are interrupted as the GA
discovers progressively more effective CAs, the fits were made only
over a stationary epoch—a period in which average population fitness
remains roughly constant. For Fig. 1(a), the fit is made for an epoch
lasting from generation 50 to generation 800; in Fig. 1(b), from gen-
eration 100 to 1000; in Fig. 1(c), from 200 to 1000; and in Fig. 1(d),
from 100 to 750.

In runs with neither resource sharing nor coevolution,hdi decreases
slowly over time, with temporary increases each time a new, more ef-
fective type of strategy is discovered. In Fig. 1(a), for example,hdi
declines slowly over nearly 800 generations, from close to 18 bits to
a minimum of approximately 12 bits. At that point, a new strategy ap-
pears around generation 900 andhdi increases again. The estimated
trend shows a negative slope, and one concludes that with this algo-
rithm, diversity steadily decreases during an epoch.

When the GA with coevolution is used, as in Fig. 1(b),hdi remains
roughly constant over a period of several hundred generations. How-
ever, its value here is only about 10 bits, implying that in this rare case
where coevolution alone does manage to produce high-performance
CA rules, the diversity of the CA population is considerably lower than
in any of the other versions of the GA. This fact suggests that part of
the reason coevolution by itself finds high-performance rules so infre-
quently may be because its search through the space of possible CAs
is relatively narrow.

When the GA with resource sharing is used, as illustrated by the run
in Fig. 1(c), hdi remains roughly constant at approximately 17 bits.
There may also be slightly greater fluctuation in the population diver-
sity about this trend than in the alternative GAs; see�hdi in Table I.

When coevolution and resource sharing are both used, as shown by
the run in Fig. 1(d),hdi increases over time, after the population ini-
tially settles down. Here,hdi goes from about 15 bits to about 21 bits
over the course of 700 generations.

3Concerned about possible long-tailed distributions governingd, we calcu-
lated the median, in addition to the average, pairwise Hamming distances. There
was no qualitative change to the results. Moreover, the median distance never
differed from the average by more than a single bit after the first few generations.
For these reasons, we report here only average pairwise Hamming distances.

It would appear then that resource sharing maintains diversity, as it
was intended to do. Its use prevents the slow decrease in, and lower
values of, total Hamming distance that otherwise occur as the popu-
lation converges on a narrower range of strategies. In other words, it
maintains a wider variation in the space of CAs. The addition of co-
evolution appears to enhance the effect of resource sharing when the
latter is also used: the total Hamming distance increases and reaches
markedly higher values over a similar number of generations.

V. CONCLUSION AND FURTHER WORK

We have presented evidence that, when a combination of resource
sharing and coevolution improves GA performance, the improvement
is largely (though not wholly) due to resource sharing, rather than to
coevolution on its own. This contradicts the conclusion offered in [9],
[10] that coevolution was the driving force behind improved GA per-
formance. We have also presented evidence that resource sharing works
by preserving diversity in the population.

Like [9], [10] and other published work on coevolution and resource
sharing, our analysis was confined to a single example, here evolving
cellular automata to perform density classification. We do not know
if the results will generalize to other evolutionary computation appli-
cations, but we believe that they will, for the reasons given in the in-
troduction. We hope that our results will spur other researchers to ex-
amine carefully the mechanisms by which claimed improvements in
evolutionary computation methods occur, especially when more than
one improvement mechanism is being used in combination. Coevolu-
tion has been proposed widely as a promising mechanism for improve-
ment, and we particularly want to understand how, and in what cases,
it can lead to better performance. The work described here is a step in
that long-term project.

Underlying these overall questions is a complicated problem in non-
linear population dynamics. Like many other examples in the evolu-
tionary computation literature, high-performance CAs evolve via a se-
ries of epochs of stasis punctuated by sudden innovations [1], [2], [4],
whether resource sharing, coevolution, both, or neither are employed.
The dynamics of epochal evolution has recently been analyzed math-
ematically in some detail [18]–[20]. It would be useful, therefore, to
bring the current investigations together with this mathematical anal-
ysis, to understand why epochal evolution with resource sharing af-
fects as it does the variance in the time it takes moderate- and high-per-
formance individuals to emerge in the population, why higher perfor-
mance individuals appear more frequently with resource sharing, and
how it is that coevolution increases these effects. Here, we have begun
to understand more systematically how resource sharing and coevo-
lution affect the evolutionary process, but not yet the details of their
underlying mechanisms.

ACKNOWLEDGMENT

The authors thank R. Das and W. Hordijk for their help in performing
these experiments and H. Juillé for helpful discussions. They also thank
W. Hordijk for comments on the manuscript.

REFERENCES

[1] (1995) Proc. Nat. Acad. Sci. USA
[2] J. P. Crutchfield, M. Mitchell, and R. Das. (1998) The evolutionary

design of collective computation in cellular automata. Tech. Rep.
98-09-080, Santa Fe Institute, Santa Fe, NM. [Online]. Available:
http://www.santafe.edu/~evca/papers/EvDesign.html

[3] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson, “Evolving glob-
ally synchronized cellular automata,” inProc. 6th Int. Conf. Genetic
Algorithms, L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann,
1995, pp. 336–343.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 393

[4] R. Das, M. Mitchell, and J. P. Crutchfield, “A genetic algorithm
discovers particle-based computation in cellular automata,” inParallel
Problem Solving from Nature—PPSN III, Y. Davidor, H.-P. Schwefel,
and R. Männer, Eds. Berlin, Germany: Springer-Verlag, 1994, vol.
866, Lecture Notes in Computer Science, pp. 344–353.

[5] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,”Phys. D, vol. 42, pp. 228–234, 1990.

[6] H. Juillé, private communication, 1998.
[7] H. Juillé and J. B. Pollack, “Dynamics of co-evolutionary learning,” in

From Animals to Animats 4: Proc. 4th Int. Conf. Simul. Adaptive Be-
havior, P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson,
Eds. Cambridge, MA: M.I.T. Press, 1996.

[8] , “Semantic niching and coevolution in optimization prob-
lems,” in 4th Eur. Conf. Artificial Life, P. Husbands and I. Harvey,
Eds. Cambridge, MA: M.I.T. Press, 1997.

[9] , “Coevolutionary learning: A case study,” inICML ’98—Proc. Int.
Conf. Machine Learning. San Mateo, CA: Morgan Kaufmann, 1998.

[10] , “Coevolving the ‘ideal’ trainer: Application to the discovery of
cellular automata rules,” inProc. 3rd Annu. Conf. Genetic Program-
ming, J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel, M.
H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, Eds. San Mateo,
CA: Morgan Kaufmann, 1998.

[11] M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving cellular automata
to perform computations: A review of recent work,” inProc. 1st Int.
Conf. Evol. Computat. Appl. (EvCA’96). Moscow, Russia: Russian
Academy of Sciences, 1996.

[12] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving cellular
automata to perform computations: Mechanisms and impediments,”
Physica D, vol. 75, pp. 361–391, 1994.

[13] F. Jimenez Morales, J. P. Crutchfield, and M. Mitchell, “Evolving two-
dimensional cellular automata to perform density classification: A report
on work in progress,” Parallel Computing, to be published.

[14] N. H. Packard, “Adaptation toward the edge of chaos,” inDynamic Pat-
terns in Complex Systems, J. A. S. Kelso, A. J. Mandell, and M. F.
Shlesinger, Eds. Singapore: World Scientific, 1988, pp. 293–301.

[15] J. Paredis, “Coevolving cellular automata: Be aware of the red queen,”
in Proc. 7th Int. Conf. Genetic Algorithms, T. Bäck, Ed. San Mateo,
CA: Morgan Kaufmann, 1997, pp. 393–400.

[16] C. D. Rosin and R. K. Belew, “Methods for competitive coevolution:
Finding opponents worth beating,” inProc. 6th Int. Conf. Genetic Algo-
rithms, L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann, 1995,
pp. 373–380.

[17] , “New methods for competitive evolution,”Evol. Comput., vol. 5,
no. 1, pp. 1–29, 1997.

[18] E. van Nimwegen and J. P. Crutchfield. Optimizing epochal evolu-
tionary search: Population-size dependent theory. Mach. Learning
[Online]Available http://www.santafe.edu/~evca/Papers/oespsdt.html

[19] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell, “Finite populations
induce metastability in evolutionary search,”Phys. Lett. A, vol. 229, no.
3, pp. 144–150, 1997.

[20] , “Statistical dynamics of the Royal Road genetic algorithm,”The-
oret. Comp. Sci., vol. 229, pp. 41–102, 1999.

