388 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Letter

Resource Sharing and Coevolution in Evolving also are able to solve. In this way, strategies receive less payoff for
Cellular Automata pursuing approaches that put them into “niches” already heavily occu-
pied. Instead, they are encouraged to explore new approaches, partic-
Justin Werfel, Melanie Mitchell, and James P. Crutchfield yjarly those which allow solving test cases that the rest of the popula-
tion finds difficult. Presumably, the population ends up more spread out
Abstract—Coevolution, between a population of candidate solutions _Ov.er the space of possiblg Strgtegies. In other Wo_rds, resource sharing
and a population of test cases, has received increasing attention as aiS intended to preserve diversity, to prevent mediocre solutions from
promising biologically inspired method for improving the performance taking over the population, and to make more likely the emergence of

of evolutionary computation techniques. However, the results of studies exceptional new strategies through recombinations of dissimilar, pre-
of coevolution have been mixed. One of the seemingly more impressive . . .
viously discovered strategies.

results to date was the improvement via coevolution demonstrated by
Juillé and Pollack on evolving cellular automata to perform a classification Another technique that has been proposed to improve the strategies
task. Their study, however, like most other studies on coevolution, did giscovered by evolutionary search methods is that of coevolution, as
not investigate the mechanisms giving rise to the observed improvements. . L . . .
In this paper, we probe more deeply into the reasons for these observed introduced by Hillis [S]. A.ny particular §tat|c method for generqtlng
improvements and present empirical evidence that, in contrast to what test cases can strongly bias the evolutionary course of strategies and
was claimed by Juillé and Pollack, much of the improvement seen was due produce over-fitting to the class of test cases that are generated. More-
to their “resource sharing” technique rather than to coevolution. We also over, there appears to be no single best static method. If the test cases
present empirical evidence that resource sharing works, at least in part, ' . . :
by preserving diversity in the population. are too easy, there is no strong pressure for high-performance strate-
gies to emerge; if the test cases are too hard, then all low-performance
strategies appear equally poor, reducing fitness variance, and evolution

cannot proceed.

In a coevolutionary scheme, a population of test cases is maintained
and evolves along with the evolving population of strategies. The fit-
Using evolutionary algorithms to design problem-solving strategi&ess of a strategy is then some function of the number of test cases
often involves the use dést case$o estimate fitness, since the spacé is able to solve, and the fitness of a test case is some inverse func-
of possible problems is typically too large to evaluate a given strategyien of the number of strategies that are able to solve it, often with
performance exhaustively. An important issue for improving statisticaPme penalty for being too difficult a test. The desired effect is that the
estimates of fitness in such situations is determining how to sample tigsit-case population will evolve so as to present an incrementally in-
cases and how to weight their contribution to fitness estimates. Thigigasing but appropriate level of difficulty for the evolving population
particularly significant if one wishes to avoid premature convergendbat forces strategies to become successively more capable of solving
in which a mediocre solution strategy with no nearby fitter variantsard problems.
takes over the population and prevents the emergence of better soliPast work by Paredis [15], in accord with our own earlier investiga-
tions. tions, showed that a straightforward version of coevolution, on its own,
Techniques that have been proposed to ameliorate this difficulty ifails to produce high-performing strategies for a cellular-automaton
cludeshared samplingin which test cases are chosen so as to be utask investigated earlier by Packard [14] and Crutchfietical. [1],
solvable by as many of the strategies in the population as possible [18], [11]. These researchers used genetic algorithms (GAs) to evolve
[17]; competitive fitness functions which a tournament-style selec-one-dimensional, two-state cellular automata (CAs) to perform a clas-
tion scheme determines that one strategy is fitter than another if &ification task. This type of CA consists of a one-dimensional lattice of
number of test cases solved by the first, but not by the second, is greatsls, each of which can be in state 0 or 1 at a given time step. The lattice
than the number solved by the second, but not by the first [8]yend starts out with an initial configuration of states, and, at each time step,
source-sharing fitness functignis which strategies receive a highereach cell updates its state depending on its current state and the states
fitness if they are able to solve test cases that are unsolvable by a lagfs neighboring cells. In Packard’s and Crutchfieldal’s studies,
fraction of other strategies. Resource sharing has produced promisimng “neighboring cells” of a cell were defined to be the three cells on
results on a number of tasks [7], [8], [16], [17]. either side of the cell. Thus, each neighborhood contained seven cells.
The motivation behind resource sharing is to promote diversity, lhe update rules can be given as a look-up table (“rule table”), con-
rewarding strategies that can solve test cases that few other strategigtsng all possible configurations of seven cells and the associated up-
date state for the center cell in each configuration. Any given rule table
Manuscript received July 26, 1999; revised February 28, 2000. This work w@" be specified uniquely by ordering the entries in lexicographic order
supported by the Santa Fe Institute, by the National Science Foundation urleneighborhood configuration (0000000 to 1111111) and then listing
Grant PHY-9531317 (Research Experiences for Undergraduates) and Grantifg2” = 128 update states in this order. This produces a bit string of

9705830, and by the Keck Foundation under Grant 98-1677. . : AT .)
J. Werfel is with the Department of Electrical Engineering and Compuu!:‘?ngth 128. These bit strings were the individuals in the GAs popula

Science, Massachusetts Institute of Technology, Cambridge, MA 02139 udgn.
(e-mail: jkwerfel@mit.edu). Following [1], [4], [11], and [14], Paredis evolved cellular automata

Lo';/l A’Yg;ﬁgg",’\m"’g%g‘; IﬂgpAhysms Group, Los Alamos National Laboratoryy, nerform a density classification task, in which an initial configuration
J. P. Crutchfield is with the Santa Fe Institute, Santa Fe, NM 87501 USA. Of the CA lattice consisting of 1s and Os was to be classified as “high-

Publisher Item Identifier S 1089-778X(00)10460-6. density” or “low-density” depending on whether or not it contained a

Index Terms—Cellular automata, cooperative systems, distributed deci-
sion making, genetic algorithms, pattern classification.

|. INTRODUCTION

1089-778X/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 389

majority of 1s. (The density of an initial configuration is defined as theorrectly classified. The ultimate success of the GA was measured in
fraction of 1sin that configuration.) A “high-density” classification wagwo ways: 1) Theerformance$ x of the best evolved strategies—the
represented by the CA reaching a fixed point of all 1s, a “low-densityfaction of correct classifications aN randomly generated test cases.
classification by a fixed point of all Os. In this task, the “strategies” aréor the results reported here, we useg.. 2) The GAssearch effi-
CA rule tables and the “test cases” are initial configurations of a Céiency&,—the percentage of runs on which at least one instance of a
lattice. given type of strategy was evolved.
In [15], a populationPc 4 of cellular automaton rule tables, encoded In [1], [4], and [11] we identified three classes of CA computational
as bit strings, coevolved with a populatidh..: of initial-configura- strategys evolved by the GA.
tion test cases, also encoded as bit strings. The fithess of a CA rule
table was calculated by running the corresponding cellular automaton
(with a_Ia_ttice of 149 cells) on ea_ch_ i_nitial cgnfigu.rationm?,t, and_ . there is a sufficiently large block of 1s (0s) in the IC, in which
determining thg number of these initial configurations that it classified case that block grows until it fills the lattice.
.correctly. Theﬂtngss qf each testcase was the number of CAruletables, p,ticle: The CA uses localized moving signals—*parti-
In _PCA that classified |incorr<_ectl3_/. Par¢d|s fpund that_ the two popu- cles"—and their collisions to transfer and combine information
lations e.ntered temporal oscn_latlons, in W.h.ICh eagh in turn perfo_rmed from different parts of the IC.
well against the other population. The individuals in both populations,] _)
however, performed poorly against opponents chosen from outside Ti§Se classes were identified on the basis of athand by exten-
populations. sive analysis pf space-time patterns prodyced by the CAs of each type.
Combinations of different approaches for improving performanq@”'y the particle strgtegl_es resulted in h|gh performapce and general-
often work better than each approach alone [17]. In particular, Juilfed well to large lattice sizes; only th_e partlcle strategles are examples
and Pollack [9], [10] investigated a combination of coevolution and r@ What we would want to call sophisticated collective computation
source sharing in the evolving cellular automata framework describBerging from local rules.
above, and found that the use of both techniques together led to thd he three different strategies were distinguished easily by the per-
production of significantly better CA strategies than did the use off@'mance? they generated: on 149-cell lattices (the size used in the
standard GA. They attributed this success to the effectiveness of 84Periments reported here) the default strategies’haet 0.5, the
evolution. block-expanding strategies had approximately < 7 < 0.68, and
Since the version of coevolution studied by Paredis [15] has belilf Particle strategies had > 0.7. A small number ohigh-perfor-
shown not to produce effective strategies for this problem when ud@@nce particlestrategies evolved witl? > 0.8. As the lattice size
alone, it seems natural to ask whether the success in [9] and [L0}&S increased, the performance of block-expanding strategies quickly
due more to coevolution or to resource sharing, or to the particulyfnt down to approximately 0.5, whereas the performance of particle
combination of the two. strategies declined much more slowly. The space-time behavior of the
It should be noted that the results of both Paredis [15] and Juillé afjigh-performance particle strategies was qualitatively similar to that
Pollack [9], [10], as well as the new results we present below, were d-the lower-performance particle strategies; why the former's perfor-
tained in the context of the evolving cellular automaton framework af@2nce was higher is still an open question.
have not yet been generalized to other problems. This framework, how!n [4], Epariicie Was approximately 3%. For reference, we note that,
ever, was designed to be general in that it captures the important fispdate, the best known CAs for density classification, evolved or de-
tures of evolving systems in which global coordination emerges whéigned by hand, have performances approximataly< 7,4 < 0.86
only local interactions are possible. In addition, this framework h&) 149-cell lattices.
been found to have a number of features common to a wide class of evoluillé and Pollack [9], [10] showed that a particular combined
lutionary systems, including moderate-to-high degrees of epistatic farm of resource sharing and coevolution resulted in higher perfor-
teractions among loci, identifiable “building blocks” that contribute tégnances (up t& ~ 0.86) and high-performance search efficiencies
high-fitness solutions, a demonstratable advantage for crossover vef§usiticle > 30%) [6] than were found in earlier evolving cellular
mutation alone, and metastable periods of fitness stasis punctuate@gipmata experiments.
rapid periods of innovation [2], [12], [19]. Moreover, these features For comparison, Paredis’s version of coevolution [15] alone pro-
have been shown to generalize to other cellular-automaton tasks thased only low-performance CAs that did no better than default strate-
yond one-dimensional density classification [3], [13]. The generaligies and had search efficienci€g...ic.c. = 0%—substantially worse
of these features will, we believe, allow the results of research in thigan that of a GA without coevolution. To investigate what aspects of
framework to inform work on a wider class of evolving systems. Thugyillé and Pollack’s method were responsible for the improved perfor-
we believe the results in [9], [10], [15], as well as our results describ&aance and search efficiency, we performed a series of experiments to
below on coevolution and resource sharing, will have implications begplicate their results and analyze them more deeply than was reported
yond the evolving cellular automaton framework. in [9] and [10].
The experiments described here used GA and CA parameters,
resource sharing fithess functions, and a coevolution scheme similar
Il. METHODS to those of [9] and [10], and identical to those of a followup study by
Juillé [6]. The populations of CAs and ICs each had 200 members. The
In[1], [4], and [11], a GA was used to evolve cellular automaton rul€As were tested on 149-cell lattices. We performed four experiments,
tables (strategies) to perform the density classification task descritesth consisting of 50 GA runs initiated with independent random
above. The fitness of each strategy was a function of its classificationmber seeds, where each run consisted of 1000 generations. The
performance on a random sample of test cases: initial configuratiangperiments evaluated four search techniques: 1) GA: the GA alone,
(ICs) of the CA lattice. The classification performance was definedlith neither resource sharing nor coevolution, with ICs drawn at each
as the fraction of ICs in a training sample or test sample that wegeneration from a density-uniform distribution (i.e., a probability

» Default: The CA always iterates to all 1s or all Os.
 Block-expandingThe CA always iterates to all 0s (1s), unless

390

distribution which is uniform with respect to IC density) 2) GA+C:
the GA with coevolution only, with ICs initially drawn at each
generation from a density-uniform distribution and allowed to evolve

TABLE |

DIFFERENT STRATEGIES

STATISTICS FOR THEEVOLUTIONARY EMERGENCE OFCAS WITH

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

thereafter; 3) GA-RS: the GA with resource sharing only, with ICS “Search Technique | CA Strategy | Search Efficiency | Time to s | Diversity
drawn at each generation from a density-uniform distribution; and s & ts | o | {d) | o
GA+RS+C: the GA with resource sharing and coevolution combine: an b'“‘;;"é’;’;d“‘g 12090;%’ 31;7 32 A a7 250
. P 0 -, .
with ICs initially drawn from a density-uniform distribution and particler % 188 | 340
allowed to evolve thereafter. block-expanding 100% 104 | 133
In the GA without resource sharing, the fitness function for a C, GA+C particle 4% % | 96 |0.24)2.39
was simply the number of ICs it was able to classify correctly: particle | 0% N/A | N/A
ply y: block-expanding 100% 33 63
Nic GA+RS particle 43% 316 | 287 | 1.3 | 2.50
f(CA) = Z correctCA;, IC,) particle+ 0% 179 | 127
=1 block-expanding 100% 84 | 157
. : . . GA-+RS+C particle 1% 289 | 266 | 7.7 | 1.90
where Nic was the number of ICs in the population, anc particleT 37 33 | 335

correcfCAy,, IC;) was one if thekth CA correctly classified Block-expanding (here defined 855 < P < 0.7, particle? > 0.7),

the jth IC and 0 otherwise. and particle- (7 > 0.8). The four main rows give results for four experiments

When coevolution Wa_s used without resqurce shar!ng, the f|tneo§§50 runs each: “GA” refers to the GA alone, “GAC" refers to the GA with
function for ICs was defined analogously, with the addition of a term) . , .)
E(CA Ic | ificially the fi ¢ ially diffi coevolution only, “GA+RS” refers to the GA with resource sharing only, and
(CA, p(_ i) to_ .Ower artiicially the fitnesses of especially diffi- “GA+RS+C" refers to the GAwith resource sharing and coevolution. Search
cult ICs with densities near = 1/2
E(CA;, p(ICj)) =1n(2) + pln(p) + (1 — p) In(1 — p)

efficiency&; is given for each CA strategyover the 50 runs of each experiment.
t is the mean number of generations to first occurrence of stratagyoss the
wherep was the probability that théth CA could solve a randomly 50 runs.o, is the standa.rd dgviatign n measu.red.across the rugg) is t.he
generated IC of densify(IC,), the density of thgth IC. The IC fitness rate of change in population diversit§) (quoted in bits per 1000 generations).
function was then 0 a4y is the standard deviation of the fluctuationif) about the best-fit line
Noa estimated in the least-squares fits of Fig. 1(a)—(d)
f(IC;j) = > E(CA;, p(IC))) - (1 — correctCA;, IC;)).

= reached a fixed point of all 1s if(IC;) > 0.5 and a fixed point of all

When resource sharing was used without coevolution, ICs did rt% otherwise. (The cagéIC,) = 0.5 was not possible on a lattice of
evolve, but were generated at each generation from a density-unifomb cells.) -

dist_ribution. qu the purpose of calculating CA fitnesses, each IC WaSty o initial population of CAs was drawn from a uniform distribu-
assigned a weight based on how many CAs it defeated: tion over the density of the 128-bit update rule (i.e., all densities were

Wio, = + 1 . equally likely). The elite CAs (fittest 20%) each generation survived
& CA.IC. to the next; 60% of the new generation was created from single-point
Z correc{CA, IC;) crossovers between pairs of randomly chosen elite individuals, with

k=1
Each CA then was assigned a fitness, according to which ICs it co@]I
solve, based on those weights:

tation probability 0.02 per bit; 20% was created by copying single
te chosen randomly (with replacement) with mutation probability
0.02 per bit. Mutation flipped the bit at the chosen locus.
With coevolution, the evolving IC population was represented as a
set of densities rather than specific ICs; each generation, a new set of
. -) ith th ifi ities. A h ion, 97%
In this way, a limited fithess resource, equal to the total number of Iéc?:s was generateq with t gspe_u led derlsmes teap _generatlon 97%
. . . o of the IC population survived intact, with the remaining 3% chosen
in the population which was divided up among all CAs. . . S - S X -
. . . . fr8m a density-uniform distribution. As in Juillé and Pollack’s experi-
When coevolution was used with resource sharing, CA weights an . : .
IC fitnesses were defined analogouslv: ments, no crossover or mutation was applied to the IC population.
? y: As described above, the performarfeg+ of a CA, evaluated after
a run, was defined as the fraction it classified correctly of 10000 ICs
drawn at random from an unbiased distribution (i.e., each cell in each
IC had an equal probability of being 0 or 1).

Nic
F(CA)) =) Wic; - correctCA, IC;).

7=1

Tovn —
Woa, Nic

> E(CAi, p(ICk)) - (1 — correctCA;, ICy))
k=1
Nea

FIC;) = S Wea, - E(CA. p(IC))) - (1 — correctCA:, IC;)). Ill. RESULTS
=1

c idered to h lassified v ICaf For each experiment, we recorded the number of runs in which
. Ai W‘j"s ?Ons/' ered to gvecasgl 'e_ correctly [Cafter a max- block-expanding, particle, and high-performance particle strategies
imum of 2.15 - 149 successive applications of the CA rule, Cad .5 icje ") were discovered and the mean number of generations it

1The density-uniform distribution can be contrasted with the binomially did00K to discover each strategy.
tributed densities of ICs generated by choosing each bit randomly, as is dond he search efficiencg. and the mean generation of first occurrence
when calculating” . The latter produces a distribution of densities strongly, for each strategy are given in Table I. The standard deviatigrof
peaked around 0.5—the hardest cases to classify. Using the density-unifeimycross the 50 runs of each alternative GA is also reported there.

distribution to generate ICs for evaluating fitness markedly improved the GAs . _
success in all cases where ICs are chosen from a distribution. The results_for GARS and GN'R_S:"C agree, within statistical
with results found by Juillé [6].

2The same algorithm was used in [1], [2], and [4], but with smaller value"éncertamty’ ; .
for population size and number of generations, and consequently lower searcfS €xpected from [15], runs with coevolution alone almost never
efficiencies. produced particle strategie®{,« > 0.7). In addition, the use of co-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,

VOL. 4

, NO. 4, NOVEMBER 2000

@) ;|

391

(b) .1

20

2
3

-
s,
3
]

600 700

L L " L . .
300 400 500 900 300 400 500

Generation

200

4

() 2|

]
g
20 g S
i
18 o, .fn
:
16 - °§3
3
14 EQ °‘2,
!
<d> 4
o
10 o
8
8 (-]
(<]
6 1 6 .
ab] P
0 100 200 300 400 500 800 700 800 800 1000 1] 100 200 300 400 500 600 700 800 900 1000
Generation Generation

Fig.1. Average pairwise Hamming distan@k over time for single GA runs with (a) neither resource sharing nor coevolution, (b) coevolution alone, (c) resource
sharing alone, and (d) resource sharing and coevoluirnis large(a64) during the initial generations, and so these data points do not appear on the scales plotted.
The straight lines show the trends in population diversity. They are least-squares fits over stationary fitness epochs in the population tgrestiicatdd slopes

(d) of the lines and the standard deviatieng, of fluctuations about them are quoted in Table I. The runs shown here are examples of those that evolved particle
strategies under each alternative GA.

evolution increases the average time taken by the GA to find evenAs an aside, note that the large varianegsin mean time to find a
low-performance, block-expanding strategies (&.9.= 104, rather given strategy are typical of and to be expected in evolutionary search
than 14), and likewise increases the variance in that tme £ 133, algorithms. The nature of such fluctuations is discussed in [18]. What
rather than 6). is notable here is that, for the discovery of particle strategies, the GA
Runs with resource sharing produce CAs with high performan&8ing resource sharing has much less variation than seen in the GA
more consistently across runs than does the GA alfine.(.. = 43%, alone. The addition of coevolution to resource sharing appears to have
rather than 29%). Moreover, runs with resource sharing tend to taiée (beneficial) effect in reducing the variations for the appearance
longer ¢, = 33, rather than 14) to find block-expanding CAs. Theyimes of partl_c_le CAs. In fact_, in reaching hlgh-performgnce partlcle
also vary mored;, = 63, rather than 6) in how long they take to doCAs, the addition of coevolution roughly doubles the variance in
s0. In short, for increased efficiency in finding particle strategies, the dif-
Comparing runs using both resource sharing and coevolutionffa(fences between resource sharing with coevolution£&5+C) and

those using resource sharing alone, the addition of coevolution appég%)urce sharing alone (G/RS) are much less pronounced than the

to heighten the effects of resource sharing. Runs using both techniq %gespondlng differences betv_vgen GRS and GAJ_C' and between .
take longer {, ~ 84 rather than 33) to find block-expanding CAs, A+RS and GA. What the addition of coevolution does most clearly is

vary more in how long it takes them to do sa (~ 157 rather than improve the search efficiency for high-performance particle strategies,
63), and find particle CAs more frequently (€.Gurice = 47% and that only in the presence of resource sharing. Thus, while Juillé and
ratr; er than 43%, anfauicies = 27% rather than 1‘6%), than do runsPollack [9], [10] attributed all the improvements they observed to the

with resource sh,aring alone ' addition of coevolution, our results make it clear that resource sharing

. . . plays a major, if nothemajor role, in producing these improvements.
By contrast, comparing runs with resource sharing and coevolution

to those with coevolution alone and to those with neither, we see that
coevolution has entirely different effects in the presence or absence of
resource sharing. Coevolution alone greatly decreases the effectivene¥¥e also investigated whether the effectiveness of resource sharing is
of the basic GA in discovering high-performance CA rules, while, ictually due, as was intended in its design, to a preservation of diversity
resource sharing is also present, the success of the GA in discoveiinthe GA population, or whether its success results from some other
high-performance rules is improved considerably. mechanism entirely.

IV. THE OPERATION OF RESOURCESHARING

392 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

One rough measure of diversity in a population is the average pairdt would appear then that resource sharing maintains diversity, as it
wise Hamming distancéf). The Hamming distancé between two was intended to do. Its use prevents the slow decrease in, and lower
CAs is simply the number of bits by which the genetic specification afalues of, total Hamming distance that otherwise occur as the popu-
their rule tables differ. CAs with different strategies are likely to diffetation converges on a narrower range of strategies. In other words, it
in more bits and, thus, to be separated by a greater Hamming distamzentains a wider variation in the space of CAs. The addition of co-
than CAs with similar strategies. When averaged over the populati@vplution appears to enhance the effect of resource sharing when the
(d) is greater if a population is more strategically diverse overall anditter is also used: the total Hamming distance increases and reaches
its members are more spread out across the genotype Space. markedly higher values over a similar number of generations.

To give a sense of the scale of Hamming distances here, recall that a
CAs rule table is specified B3/ = 128 binary update states. This<
(d) < 128. Since the initial CA population was initialized randomly, . o
(d) ~ 128/2 = 64 bits at the start of a run. We have presenteq e\{ldence that, when a comblnathn of resource

Fig. 1 shows(d) at each generation for sample runs that evolvegaring and coevolution improves GA performance, the improvement
high-fitness particle-based CAs with (a) neither resource sharing rifargely (though not wholly) due to resource sharing, rather than to
coevolution, (b) coevolution alone, (c) resource sharing alone, and f@gvolution on its own. This con.tr.adlcts the conclu.smn offered in [9],
both techniques. In all cases, as expectedl,starts out at approxi- [10] that coevolution was the driving force behind improved GA per-
mately 64 and then quickly decreases over a few generations, asfgjgance. We have also presented evidence that resource sharing works
fittest CAs and their descendants take over the population, which s&¢-Preserving diversity in the population.
tles down to CAs with similar strategies. Like [9], [10] and other published work on coevolution and resource

Beyond this transient phase, over each gdinfluctuates about 10% sharing, our analysis was confined_ toa sin_g_le e?(ample, here evolving
to 20% as evolution progresses. Nonetheless, as the plots show, &&dilar automata to perform density classification. We do not know
run does follow an overall trend in population diversity. We measurdgthe results will generalize to other evolutionary computation appli-
these trends, using a least-squares fit to estimate the average rafe@pns, but we believe that they will, for the reasons given in the in-
change in population diversity/). We also estimated the standard detroduction. We hope that our results will spur other researchers to ex-
viatione 4, of fluctuations in(d) about the fit. Both estimates for each@Mne carefully the m(_achanlsms by which Clalm_ed improvements in
run are reported in Table | . Since such trends are interrupted as the @/&lutionary computation methods occur, especially when more than
discovers progressively more effective CAs, the fits were made orff}€ improvement mechanism is being used in combination. Coevolu-
over a stationary epoch—a period in which average population fitn¢i¥ has been proposed widely as a promising mechanism for improve-
remains roughly constant. For Fig. 1(a), the fit is made for an epofent; and we particularly want to understand how, and in what cases,
lasting from generation 50 to generation 800; in Fig. 1(b), from gef{-can lead to better performance. The work described here is a step in
eration 100 to 1000; in Fig. 1(c), from 200 to 1000; and in Fig. 1(djhat long-term project.
from 100 to 750. Underlying these overall questions is a complicated problem in non-

In runs with neither resource sharing nor coevoluti@h,decreases In€ar population dynamics. Like many other examples in the evolu-
slowly over time, with temporary increases each time a new, more dfnary computation literature, high-performance CAs evolve via a se-
fective type of strategy is discovered. In Fig. 1(a), for exampy, €S of epochs of sta5|s_ punctuated py sudden |nnoyat|ons [1], [2], [4],
declines slowly over nearly 800 generations, from close to 18 bits {1ether resource sharing, coevolution, both, or neither are employed.
a minimum of approximately 12 bits. At that point, a new strategy ala’_he o_Iynam_lcs of epoche_ll evolution has recently been analyzed math-
pears around generation 900 afal) increases again. The estimateMatically in some detail [18]-[20]. It would be useful, therefore, to
trend shows a negative slope, and one concludes that with this a|55_ng the current investigations together. with _thls mathematlca! anal-
rithm, diversity steadily decreases during an epoch. ysis, to gnderstand W_hy eppchal t_evoll_Jtlon with resource shar_lng af-

When the GA with coevolution is used, as in Fig. 1(al) remains fectsas it (.joe.s.the variance in thg time it takes .moderate-.and high-per-
roughly constant over a period of several hundred generations. Hdgmance individuals to emerge in the population, why higher perfor-
ever, its value here is only about 10 bits, implying that in this rare cag#nce individuals appear more frequently with resource sharing, and
where coevolution alone does manage to produce high-performaﬁ@é" it is that coevolution increases these effects. Here, we have begun
CA rules, the diversity of the CA population is considerably lower tha}® Understand more systematically how resource sharing and coevo-
in any of the other versions of the GA. This fact suggests that part lgfion affect the evc_)lutlonary process, but not yet the details of their
the reason coevolution by itself finds high-performance rules so infrdfderlying mechanisms.
quently may be because its search through the space of possible CAs
is relatively narrow. ACKNOWLEDGMENT

When the GA with resource sharing is used, as illustrated by the ru
in Fig. 1(c),{d) remains roughly constant at approximately 17 bit
There may also be slightly greater fluctuation in the population div
sity about this trend than in the alternative GAs; seg in Table I.

When coevolution and resource sharing are both used, as shown by
the run in Fig. 1(d){d) increases over time, after the population ini-
tially settles down. Hergd) goes from about 15 bits to about 21 bits

over the course of 700 generations. [1] (1995) Proc. Nat. Acad. Sci. USA _
[2] J. P. Crutchfield, M. Mitchell, and R. Das. (1998) The evolutionary
design of collective computation in cellular automata. Tech. Rep.
98-09-080, Santa Fe Institute, Santa Fe, NM. [Online]. Available:
3Concerned about possible long-tailed distributions goverdinge calcu- http://www.santafe.edu/~evca/papers/EvDesign.html
lated the median, in addition to the average, pairwise Hamming distances. Ther§3] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson, “Evolving glob-
was no qualitative change to the results. Moreover, the median distance never ally synchronized cellular automata,” iroc. 6th Int. Conf. Genetic
differed from the average by more than a single bit after the first few generations. Algorithms L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann,
For these reasons, we report here only average pairwise Hamming distances. 1995, pp. 336-343.

V. CONCLUSION AND FURTHER WORK

"he authors thank R. Das and W. Hordijk for their help in performing
hese experiments and H. Juillé for helpful discussions. They also thank
W, Hordijk for comments on the manuscript.

REFERENCES

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

393

[4] R. Das, M. Mitchell, and J. P. Crutchfield, “A genetic algorithm [12] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving cellular

discovers particle-based computation in cellular automataRainallel
Problem Solving from Nature—PPSN, IN. Davidor, H.-P. Schwefel,
and R. Méanner, Eds. Berlin, Germany: Springer-Verlag, 1994, vol.
866, Lecture Notes in Computer Science, pp. 344-353.

[5] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an

[6]
(7]

(8]

El
(10]

(11]

optimization procedure Phys. Q vol. 42, pp. 228—-234, 1990.

H. Juillé, private communication, 1998.

H. Juillé and J. B. Pollack, “Dynamics of co-evolutionary learning,” in
From Animals to Animats 4: Proc. 4th Int. Conf. Simul. Adaptive Be-
havior, P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson,
Eds. Cambridge, MA: M.I.T. Press, 1996.

——, “Semantic niching and coevolution in optimization prob-
lems,” in 4th Eur. Conf. Artificial Life P. Husbands and I. Harvey,
Eds. Cambridge, MA: M.I.T. Press, 1997.

——, “Coevolutionary learning: A case study,” iEML '98—Proc. Int.
Conf. Machine Learning San Mateo, CA: Morgan Kaufmann, 1998.
——, “Coevolving the ‘ideal’ trainer: Application to the discovery of
cellular automata rules,” ifProc. 3rd Annu. Conf. Genetic Program-
ming J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel, M.
H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, Eds. San Mateo,
CA: Morgan Kaufmann, 1998.

M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving cellular automata
to perform computations: A review of recent work,” Rroc. 1st Int.
Conf. Evol. Computat. Appl. (EvCA'96) Moscow, Russia: Russian
Academy of Sciences, 1996.

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

automata to perform computations: Mechanisms and impediments,”
Physica DQ vol. 75, pp. 361-391, 1994.

F. Jimenez Morales, J. P. Crutchfield, and M. Mitchell, “Evolving two-
dimensional cellular automata to perform density classification: A report
on work in progress,” Parallel Computing, to be published.

N. H. Packard, “Adaptation toward the edge of chaosDymamic Pat-
terns in Complex Systemd. A. S. Kelso, A. J. Mandell, and M. F.
Shlesinger, Eds. Singapore: World Scientific, 1988, pp. 293-301.

J. Paredis, “Coevolving cellular automata: Be aware of the red queen,”
in Proc. 7th Int. Conf. Genetic Algorithm3. Back, Ed. San Mateo,
CA: Morgan Kaufmann, 1997, pp. 393-400.

C. D. Rosin and R. K. Belew, “Methods for competitive coevolution:
Finding opponents worth beating,” Rroc. 6th Int. Conf. Genetic Algo-
rithms L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann, 1995,
pp. 373-380.

——, “New methods for competitive evolutionEvol. Comput.vol. 5,

no. 1, pp. 1-29, 1997.

E. van Nimwegen and J. P. Crutchfield. Optimizing epochal evolu-
tionary search: Population-size dependent thedhach. Learning
[Online]Available http://www.santafe.edu/~evca/Papers/oespsdt.html
E. van Nimwegen, J. P. Crutchfield, and M. Mitchell, “Finite populations
induce metastability in evolutionary searcRHys. Lett. Avol. 229, no.

3, pp. 144-150, 1997.

——, “Statistical dynamics of the Royal Road genetic algorithifrhe-
oret. Comp. Scj.vol. 229, pp. 41-102, 1999.

