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MODEL DETAILS

In this section we provide additional details for the
reference model whose results are discussed in the main
paper. The model dynamics is a sequence of synchronous
updates of a two-dimensional spatial array of cells. At
each time step, the following events simultaneously take
place for each site in the array:

• An empty site has probability

PE→R = 1 − (1 − g)NR

of transitioning to a resource-only site, where g is
the probability per time step of a resource-only site
reproducing into a given neighboring empty site,
and NR is the number of resource-only sites among
the empty site’s four nearest neighbors. This ex-
pression is equivalent to the statement that each
neighboring resource-only site has an independent
probability g of “seeding” the empty site.

• A resource-only site has probability

PR→C = 1 −
NC
∏

i

(1 − pi)

of transitioning to a consumer site, where NC is
the number of consumers among its four neighbors
and the values pi are the corresponding consumer
reproduction probabilities. This expression corre-
sponds to each neighboring consumer site i having
an independent probability pi of trying to repro-
duce into this site. If more than one consumer does
so, one is chosen at random to be the parent, with
equal probability for each. The offspring has p and
q initialized equal to that of its parent; then with
probability µp (µq), that value is increased by ǫp

(ǫq), or decreased by that amount with equal prob-
ability.

• A consumer site has probability PC→E = v + kc of
transitioning to an empty site (all resources in the
site are consumed, resulting in consumer death),
where k is the number of offspring the consumer
produces in this time step, and probability PC→R =

q of transitioning to a resource-only site (death due
to intrinsic mortality).

Simulations were performed on lattices of size 250 ×
250, except for cases with immortal consumers where the
population was not stable on a lattice of that size (quickly
going to extinction in such cases). Accordingly, results
for immortals shown in Figure 2 were run on the smallest
of {250× 250, 500× 500, 750× 750} for which a steady-
state population of consumers could persist. Increasing
the lattice size further does not change the steady-state
values of p and q. Specifically, we used:

• 250 × 250: g = {0.05, 0.1, 0.2}, v = {0.1, 0.2}

• 500 × 500: g = {0.05, 0.1}, v = {0.005, 0.01, 0.05};
g = 0.2, v = {0.01, 0.05}

• 750 × 750: g = 0.2, v = 0.005

Mortal populations were stable on 250×250 arrays in all
cases.

In most of the numerical studies presented in this work,
we focus on the limiting case of no cost of reproduction
(c = 0), due to the greater clarity of interpretation in that
case: e.g., in immortal populations, the reproductive re-
straint that evolves cannot be attributed to an individual
effort to conserve resources, since reproducing is free to
the individual. Increasing c does not change the quali-
tative result that restraint is favored in the long term.
We discuss the effect of nonzero values of c further in the
section on mean-field analysis below.

In ascendance studies, we initialized the lattice ran-
domly with each site having a 55% chance of being empty,
a 40% chance of having resources only, and a 5% chance
of having a consumer, with p and q in the latter case each
randomly chosen from a uniform distribution between 0
and 1.

Values of p and q are only meaningful within a finite
range, [0, 1] and [0, 1 − v] respectively. (The latter ex-
pression arises since starvation and intrinsic death are
taken to be mutually exclusive possibilities.) Accord-
ingly, mutants with values outside these ranges are set to
the boundary values. To ensure that this operation does
not cause artifacts in the steady-state value of q or p,
we performed simulations that progressively reduced the
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FIG. S1. Traces showing mean (dark) and maxi-
mum/minimum (light) values of p (blue) and q (red) over the
full course of an ascendance study, with initial transient pe-
riod (t = 0–100000) and intermediate period during which ǫp

and ǫq are reduced (t = 100000–200000). Statistics reported
in Figure 1 are based on the final 50000 time steps of each
numerical trial.

size of mutations ǫp and ǫq. Following an initial 100,000
steps to achieve steady state, an additional 100,000 steps
were performed during which ǫp and ǫq were halved every
10,000 steps, ending with a final 50,000 steps to obtain
steady-state behavior (Figure S1). The resulting mini-
mum value of q, as well as the mean, was significantly
above 0 in all cases in Figure 2 (with the exception of
the largest neighborhood sizes in panel E: see below),
supporting the finding that finite lifespan is consistently
favored. The mean values reported in Figure 2 are based
on averages over those final 50,000 steps sampled once
every 100 steps.

In invasion studies, we initialized the simulation with a
steady-state configuration (following 200,000 time steps)
of the “invaded” population. One consumer is then cho-
sen at random and converted to an invader, with p un-
changed, q set to 0, and µq set to 0.1275 or 0 according
to whether the invader is mortal or immortal. If invaders
succeed in taking over the entire consumer population,
the model is reset on the next time step to a steady-state
configuration of the invaded variant. If the invader’s off-
spring become extinct, or the steady state is reset follow-
ing a successful takeover, a new consumer is chosen at
random and converted to an invader. The trial continues
for 100,000 introduction attempts, or 500,000 attempts
for immortals invading mortals (due to such an invasion’s
low chance of success). In control studies in which both
invader and invaded are mortal, q is left unchanged when
an invader is introduced. Studies for each (g, v) pair were
conducted on arrays of the smallest size for which im-

mortal consumer populations could persist, as specified
above. Table S1 gives probabilities of successful invasion
for several values of g and v.

Competition studies are analogous to invasion studies
without mutation. The simulation is initialized with a
steady-state configuration for given values of parameters
g, v, c; all consumers have the corresponding equilibrium
values of p and q, and mutation is turned off (µp = µq =
0). One consumer is chosen at random and converted
to an invader, and its offspring followed as in invasion
studies, with q set to a new value for invaders and µq

still 0.
The contact rate ρ for consumers, defined as the mean

number of resource-only sites in a consumer’s neighbor-
hood, gives a measure of the resource availability in the
local environment. However, it does not directly reflect
the number of opportunities for the consumer to repro-
duce at that time step, because those neighboring re-
source sites may have other consumer neighbors of their
own attempting to reproduce into them. Accordingly, we
define the effective contact rate ρ′ for a consumer by tak-
ing each of its resource-only neighbors j, dividing 1 by j’s
number of consumer neighbors, and adding those quan-
tities: ρ′ =

∑

j∈nn in state R(1/NC(j)). Thus ρ′p is the
expected number of offspring for a consumer at a given
time step, and ρ′pL = ρ′p/(v + q) its expected lifetime
reproduction. The results shown in Figure 1D and 1E
are based on competition studies with 105 introductions
of invaders for each invading value of q.

In studies with increasing neighborhood size γ (Figure
2E), the neighborhood from which a resource can be cho-
sen for reproduction into an empty site, or a consumer for
reproduction into a resource-only site, is shown in Figure
S2. In the studies of Figure 2E, the minimum value of
q in the consumer population (following the reduction of
ǫp and ǫq as described above) is greater than 0 in all tri-
als for γ ≤ 32 (intrinsic mortality remains favored); for
γ ≥ 36, the minimum value of q is 0 for all trials (con-
sumers with unlimited intrinsic lifespan persist; intrinsic
mortality is no longer evidently favored).

MEAN-FIELD ANALYSIS

In this section we present an analytic mean-field (spa-
tially averaged) treatment of the model and show that it
predicts the evolution of faster reproduction and longer
lifespan under all circumstances. This is consistent with
the expectation that homogenous systems do not allow
evolution of shorter lifespan, even though the spatial
model does.

Consider first a case without mutation and with a pop-
ulation of consumers all having a single value of p and of
q. Let {nR, nC , nE} be the fraction of sites in each of the
three possible states {resource-only, resource+consumer,
empty}. For simplicity, we consider the case of small
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(g ·nR) and (p ·nC), where the probability of multiple re-
sources or consumers simultaneously trying to reproduce
into a single site is small:

PE→R = 1 − (1 − g)NR ≈ NRg ≈ nRγg

PR→C = 1 −
∏NC

i (1 − pi) = 1 − (1 − p)NC ≈ NCp ≈ nCγp

where the last step represents the spatial averaging, with
γ equal to the number of neighbors of a site (4 in our
model). At steady-state, for each of the three possible
states, the number of sites making transitions to and from
that state are equal:

Resource-only: nEnRγg + nCq= nRnCγp

Resource+consumer: nRnCγp = nCr= nC(v + rc + q)

Empty: nC(v + rc) = nEnRγg

where r is the renormalized consumer reproduction rate,
i.e., the average number of offspring per consumer per
time step. This system of equations can be solved to
give these results:

r =
v + q

1 − c

nR =
r

γp

nC =

(

1 −
r

γp

)

(

1

1 + p

g

v+qc

v+q

)

nE =

(

1 −
r

γp

)

(

1

1 + g
p

v+q
v+qc

)

These approximate mean-field equations can be useful in
understanding the trends found in simulations of the spa-
tial model as a function of model parameters (Figure S3)
even though, as we will show, they predict incorrectly
the outcome of evolution. For example, the actual con-
sumer reproduction rate, r, is found to be independent
of the probability p that a consumer tries to reproduce if
given the opportunity. This counterintuitive result arises
from compensating changes in the number of available
resource sites into which consumers can reproduce.

In order to evaluate the predictions of mean-field the-
ory for dominance of strains under mutation and selec-
tion, we consider a system with two consumer strains,
having distinct parameter values {p1, q1} and {p2, q2}.
(The extension to larger numbers of strains is straight-
forward.) Site transition rates into the two consumer
states are

n+
C1 = nRnC1γp1

n+
C2 = nRnC2γp2

and away from these states are

n−
C1 =nC1(v + q1 + r1c) = nC1

(

v + q1

1 − c

)

n−
C2 =nC2(v + q2 + r2c) = nC2

(

v + q2

1 − c

)

If v+q1

(1−c)p1

< nRγ, then n+
C1 > n−

C1 and the fraction

of sites of consumer strain 1 increases. Similarly, if
v+q2

(1−c)p2

> nRγ, then n+
C2 < n−

C2 and the fraction of sites

of strain 2 decreases. Hence if

v + q1

p1
<

v + q2

p2

then strain 1 will dominate strain 2, driving it to extinc-
tion.

More exact mean-field calculations (not making the ap-
proximation of small gnR and pnC) do not change the es-
sential conclusions. While the expressions for transition
probabilities between states then have more complicated
nonlinear dependences on g and p, it remains true that
increasing p gives monotonically increasing probability of
consumer reproduction at that time step. Moreover, the
calculations make no approximations regarding q. As a
result, it remains the case that higher p and lower q are
always favored in the mean-field treatment.

Thus, in the mean-field approximation for two strains
with equal q, the one with higher reproduction probabil-
ity p always dominates; and for two strains with equal
p, the one with lower intrinsic mortality probability q
always dominates. These results can be immediately un-
derstood because in a homogenous (well-mixed) or mean-
field system, all available resource sites can be equally
reached for reproduction by any consumer, and thus the
consumer that reproduces most—by reproducing fastest,
or surviving to reproduce longest—dominates in all cir-
cumstances. The same argument does not hold in a spa-
tial model.

VARIATIONS ON THE REFERENCE MODEL

In this section we briefly discuss how a number of quali-
tative changes to the reference model affect its behavior.
We consider: deterministic rather than stochastic lim-
itations to lifespan (explicit programmed mortality, or
rapid senescence); increasing mortality with age (grad-
ual senescence); spatial mixing within a consumer popu-
lation and migration of consumers within resource ar-
eas; increased dispersal for reproduction of both con-
sumers and resources; deterministic resource use with
continuous-valued resources, rather than binary resource
state and stochastic consumption; individual consumers’
ability to adjust their “rate of living”; resources that re-
generate spontaneously, rather than being spread only
locally by existing resources; consumer reproduction sup-
planting others already present; resources that continue
to regenerate even when exploited by consumers; and
sexual reproduction by consumers.

All these model variants support the generality of the
conclusion that finite lifespan is favored, when resources
are limited and dispersion is local. For each variant, un-
less otherwise specified, we performed 10 independent nu-
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merical trials on a 250 × 250 lattice with g = v = 0.05
and c = 0. Except where noted, in all cases p evolved to
a value of 1 and q to a value significantly greater than 0,
as in the reference model.

Deterministic lifespan

In this variant, the genotype specifies intrinsic lifespan
directly as a fixed length of time: L time steps after a con-
sumer is born, it dies, regardless of remaining resources.
Including some variability in the lifespan, by choosing it
from some distribution with mean at L and a moderate
variance, does not change the results.

Increasing mortality with age

In this variant, a consumer’s probability of death at
each time step is given by the Gompertz equation [1]
m(t) = m0e

qt, where m0 is a constant (chosen here to be
0.1), t is the number of time steps since the consumer’s
birth, and q is a heritable value as in the reference model.
In this case q is not restricted by the simulation to be
nonnegative; still, it evolves to a limited value (for these
parameter values, approximately 0.15).

Note that for other conditions, this model variant can
predict the evolution of different senescence patterns. For
instance, if intrinsic mortality is set to be initially much
higher than the equilibrium found in the reference model
(e.g., m0 = 0.5), then negative senescence can evolve (for
these parameter values, equilibrium q ≈ −0.23).

Consumer migration

In this variant, we allow consumer mobility. For this
purpose, we split each time step into three successive
stages: first, reproduction of both resources and con-
sumers; second, resource depletion and consumer death
through both starvation and intrinsic mortality; and
third, mobility, in which each consumer (asynchronously,
in random order) is able to move.

We tested three types of mobility: (a) a consumer
trades places with a randomly chosen neighboring con-
sumer (if any exist); (b) a consumer moves to a neigh-
boring, unoccupied resource site if such exists; (c) a con-
sumer exchanges places with a nearby randomly chosen
non-empty site of either type. In all three cases self-
limited lifespan is favored; in cases (b) and (c) reproduc-
tion p sometimes evolves to an equilibrium value slightly
below 1. Increasing the mobility distance to a limited
extent (e.g., choosing the target site in version (c) from a
7×7 square centered at the consumer’s original position)
does not change the qualitative result.

Increased consumer or resource dispersal

In this variant, consumers or resources are not lim-
ited to reproducing into only the four neighboring sites.
For ease of implementation, a modified version of the
model was used for these studies: Instead of the reference
model’s synchronous update where each site was simulta-
neously updated based on its value and those of its neigh-
bors, an asynchronous update was used in which sites
were successively chosen in random order for updates of
the following form: empty sites remained empty; resource
sites remained resources, and had a probability g of also
reproducing by converting one empty site to a resource
site; consumer sites had a probability v of becoming an
empty site and q of becoming a resource site (v + q ≤ 1),
and separately a probability p of reproducing by convert-
ing one resource site to a consumer site. For such resource
or consumer reproduction, the offspring site was chosen
randomly from all sites of the appropriate type such that
both the row and column indices differed by at most RR

or RC (for resources and consumers, respectively) from
those of the parent. For RR = RC = 1, this model pro-
duces the same qualitative results as the reference model
(p evolves to 1, q to nonzero values). (Note that these
dispersal ranges are both effectively greater than those in
the reference model: reproduction is possible there only
in the 4-neighborhood, here in the 8-neighborhood.)

Increasing the consumer dispersal range RC can dis-
rupt the local neighborhood relationships that make it
possible for selection to favor restraint. Large enough RC

makes the system effectively well-mixed. In such cases
consumption increases through unchecked selection for
faster reproduction and longer lifespan, until the con-
sumer population exhausts all available resources and
goes extinct. The dispersal range above which this oc-
curs is a function of the ecological parameters g, v, c as
well as the size of the simulation space. This is be-
cause g, v, c, RC affect the length scale of the characteris-
tic population structure; if that length scale is too large
compared to the space, the spatial nature of the model
breaks down. Thus a given value of RC can result in
extinction on lattices of a given size but allow evolution
of restraint and a sustainable consumer population on
larger lattices. For instance, with g = v = 0.05 and
c = 0, a consumer population with RC = 1 consistently
goes extinct on a 50 × 50 lattice (in 5800 ± 6300 time
steps), but survives (i.e., persists for at least 250, 000 time
steps, evolving intrinsic mortality) on a 100 × 100 lat-
tice; RC = 2 consistently gives extinction on a 200× 200
lattice (in 60000 ± 37000 time steps) but survival on a
250× 250 lattice; RC = 3 results in consistent extinction
on a 250×250 lattice (in 5400±4900 time steps), survival
in 3 of 10 trials on a 500 × 500 lattice (with extinction
in 100000 ± 80000 time steps in the other trials), and
consistent survival on a 750 × 750 lattice.
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Increasing the resource dispersal range RR increases
the extent to which consumers generally have resources
available, which affects the extent to which intrinsic mor-
tality is favored. For instance, with g = v = 0.05, in-
creasing RR to 5 results in enough resource availability
that intrinsic mortality is not favored; increasing the con-
sumption rate v to 0.1 reduces resource availability and
returns the model to the regime where intrinsic mortality
is favored, and increasing v to 0.2 results in the evolution
of still higher intrinsic mortality rates.

Continuous-valued resources and deterministic

consumption

In this variant, we treat resources as continuous-valued
and consumption as occurring with a fixed rate. All sites
are characterized by the quantity of resources they con-
tain, with a value from 0 to 1. Consumers deplete re-
sources by an amount v per time step, and c per repro-
duction. When resources in a site reach 0, the consumer
there dies. If the consumer dies prematurely due to in-
trinsic mortality, residual resources remain for future ex-
ploitation. When an empty site is converted to one con-
taining resources, the resource value there is set to 1.
Partially depleted resources are left unreplenished. Re-
plenishing partially depleted resources slowly or quickly
over time (to a maximum of 1) does not change the qual-
itative result.

Consumers can adjust rate of living in response to

resource shortages

To consider the ability exhibited by many organisms to
adjust rate of living in response to environmental condi-
tions (e.g., dauer formation in C. elegans, dietary restric-
tion [2]), we explored a variant based on the continuous-
valued resource variant described above. In this vari-
ant, if a consumer is in a site with resource value below
a threshold T , it adjusts its consumption v, reproduc-
tion p, and intrinsic mortality q all by a multiplicative
constant k. Additionally, depleted resources are grad-
ually renewed, by an amount D per time step, in both
resource-only sites and those occupied by consumers. We
conducted numerical trials with g = 0.1, v = 0.2, D =
0.05, k = T = 0.5.

Spontaneously generated resources

In this variant, we consider spontaneous appearance
of resources at any location in space. This model corre-
sponds to certain plant-herbivore systems, where a plant
such as grass can be cropped down to its roots and
regrow. Empty sites in this variant become resource

sites with probability g at each time step independent
of whether other resources are located nearby. Resources
are generated much more readily than in the reference
model, and so a much lower value of g (we used 0.005)
produces an overall level of resource production compara-
ble to that in the reference model and a similar degree of
lifespan control. For high values of g, the consumer pop-
ulation is not limited by resource availability and lifespan
control does not evolve.

Reproduction supplants existing consumers

In this variant, we allow consumers to reproduce not
only into sites with resources alone, but also those with
consumers already present, replacing the previous con-
sumer.

Resources reproduce even when exploited by

consumers

In this variant, we explored the consequences of al-
lowing resources to reproduce even when consumers are
present—i.e., resource sites reproduce with probability g
in the absence of consumers and g′ in their presence (in
the reference model, g′ = 0).

A nonzero g′ increases the overall level of resource
availability. Hence this variant requires reducing g
and/or increasing v to obtain results quantitatively com-
parable to those of the reference model. For example, for
g = g′ = 0.05, v = 0.23, the steady-state value of q is
close to that of the reference model for g = v = 0.05 and
for g = v = 0.23. For a given g and v, increasing g′ leads
to lower steady-state values of q (longer lifespan), just
as increasing g for fixed v does in the reference model
(Figure 2).

It is possible in this variant, if the level of resource
growth is high enough compared to v, for consumers to
have little enough impact on the spatial distribution of
resources that selection does not limit reproduction prob-
ability (for immortals) or lifespan (for mortals). For ex-
ample, with g = v = 0.05, reproduction and lifespan
limits occur for g′ ≤ g/3 and not for g′ ≥ g/2.

Sexual reproduction by consumers

In this variant, when a consumer reproduces, a second
consumer is randomly chosen to be the other parent of
the offspring, with the values of p and q for the offspring
being the average of those of the two parents plus muta-
tion as in the reference model. When the second parent is
chosen from nearby (e.g., from a 7×7 region centered on
the offspring), finite lifespan is favored, as is reproductive
restraint: q evolves to a value significantly greater than
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0, and p to a value less than 1. When the second parent is
drawn from the entire consumer population (i.e., a form
of global dispersal), no restraint evolves: q evolves to 0
and p to 1.

CLASSIC PERSPECTIVES ON LIFESPAN

CONTROL

Mainstream evolutionary theory considers it well-
established that selection does not and cannot act in
favor of decreased lifespan (unless more than compen-
sated by a concomitant increase in early-life fitness, in
the antagonistic pleiotropy framework [3]). This perspec-
tive is unambiguous and strongly stated throughout the
literature, with characteristic statements about the im-
possibility of genes for aging or lifespan control and the
error in thinking that aging could be adaptive or pro-
grammed (see, e.g., [2, 4–6]). The intuition is clear and
often explicit: aging is disadvantageous to the individ-
ual and therefore should always be selected against when
possible [2–5].

These views can be traced back to controversy in evo-
lutionary theory in ca. the 1960s, in which in a broad
rejection of the idea of group selection, it became stan-
dard practice to rule out explanations relying on selection
above the individual level [7]. The corresponding argu-
ment in the context of the evolution of lifespan—that
selection for shorter lifespan should not be considered if
any alternative explanation exists—was explicitly stated

then [3], and continues to persist today. Such a view
risks blinding evolutionary biology to an important ex-
planatory process, particularly with increasing evidence
that selection above the individual level is an important
evolutionary force [8–12].
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FIG. S2. Sites (white) considered to be in the neighborhood of a focal site (black), for the studies with increasing neighborhood
size γ whose results are shown in Figure 2E.
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FIG. S3. Mean-field calculations generally predict trends in population levels and net reproduction. Each panel shows the
effects of varying one of the five parameters {g, v, c, p, q}. Mean-field calculations are shown in the top panels, average results
from ten independent spatial simulations are shown in the bottom panels. Green = fraction of array occupied by resource sites
(nr), red = fraction of consumers (nc), blue = fraction empty (ne), cyan = renormalized consumer reproduction rate (r). In
panels other than the one in which they are varied, parameter values are g = 0.05, v = 0.2, c = 0, p = 0.9, q = 0.3.
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TABLE S1. Mortals dominate immortals in invasion studies.
Shown are probabilities of successful invasions for different
values of resource growth rate g and consumption rate v (all
with reproduction cost c=0), and for each combination of
mortal and immortal invaders and invaded

g = 0.05, v = 0.05
Invaded:

Immortal Mortal

Invader:
Mortal (2.51 ± 0.05) × 10−2 (1.0 ± 0.7) × 10−5

Immortal (2 ± 1) × 10−5 0

g = 0.05, v = 0.1
Invaded:

Immortal Mortal

Invader:
Mortal (1.91 ± 0.04) × 10−2 (1.1 ± 0.3) × 10−4

Immortal (1.2 ± 0.3) × 10−4 0

g = 0.05, v = 0.2
Invaded:

Immortal Mortal

Invader:
Mortal (1.23 ± 0.04) × 10−2 (1.6 ± 0.4) × 10−4

Immortal (2.8 ± 0.5) × 10−4 0

g = 0.1, v = 0.05
Invaded:

Immortal Mortal

Invader:
Mortal (2.51 ± 0.05) × 10−2 (2 ± 1) × 10−5

Immortal (2 ± 1) × 10−5 0

g = 0.1, v = 0.1
Invaded:

Immortal Mortal

Invader:
Mortal (2.38 ± 0.05) × 10−2 (5 ± 2) × 10−5

Immortal (1.4 ± 0.4) × 10−4 0

g = 0.1, v = 0.2
Invaded:

Immortal Mortal

Invader:
Mortal (1.80 ± 0.04) × 10−2 (1.1 ± 0.3) × 10−4

Immortal (1.1 ± 0.3) × 10−4 0

g = 0.2, v = 0.05
Invaded:

Immortal Mortal

Invader:
Mortal (2.24 ± 0.05) × 10−2 (2 ± 1) × 10−5

Immortal (3 ± 2) × 10−5 0

g = 0.2, v = 0.1
Invaded:

Immortal Mortal

Invader:
Mortal (2.44 ± 0.05) × 10−2 (5 ± 2) × 10−5

Immortal (1.1 ± 0.3) × 10−4 0

g = 0.2, v = 0.2
Invaded:

Immortal Mortal

Invader:
Mortal (2.12 ± 0.5) × 10−2 (1 ± 1) × 10−5

Immortal (7 ± 3) × 10−5 0


