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� We extend the analytical results on speciation of hermaphroditic populations to sex-separated ones.

� We provide detailed comparisons between the analytical and numerical results for both cases.
� We show that the analytical formulas match the simulations.
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The branching of new species from an ancestral population requires the evolution of reproductive
isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if
sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in
each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon
may occur in the absence of barriers via isolation by distance if the population is distributed over large
areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration
of this process was based on computer simulations employing agent-based models. Recently, analytical
results were derived combining network theory, to model the spatial structure of the population, and an
ansatz that accounts for the effect of forbidding mating between individuals that are too different
genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression
that indicates when speciation is possible as a function of the parameters describing the population. The
aim of this work is to test this analytical result by comparing it with numerical simulations for a
hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly
separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed
a very good overall description of the simulations and that the exponents describing dependence of the
critical threshold of speciation with the parameters are in good agreement with the simulations.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A central problem in genetics is to understand how allele
frequencies change over time, resulting in a diversity of organisms.
The resulting population structure may lead to speciation events,
separating into multiple genetically incompatible groups (Mayr,
2001; Fitzpatrick et al., 2009). In real populations the problem
involves a large number of variables that cannot usually be
monitored or controlled, such as mutation rate, selection, number
of genes involved, genetic incompatibilities, variable population
size and area where the population lives (Baptestini et al., 2013;
Lande and Kirkpatrick, 1988; Gavrilets, 2006). Here we compare
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simulations and analytical results on speciation in spatially
extended populations. Our results quantify the increase of specia-
tion with decreasing population density, increasing mutation rate
and genome size, more restrictive mating in space and genetic
variation. All dependencies are incorporated in a single scaling
function analysis of the threshold conditions for speciation through
spontaneous segregation of interbreeding spatial populations.

One of the simplest theoretical formulations of the dynamics of
population diversity was proposed by Moran, who described the
neutral evolution of a single gene with two alleles in a population of
haploid individuals subjected to mutations. An important feature of
the Moran model is the overlapping of generations, meaning that only
one individual is replaced at each time step, as opposed to the
synchronous update of the entire population, as in the model
proposed by Wright and Fisher (Ewens, 1979; Moran, 1971; Wakeley,
2009). The Wright–Fisher model describes, for instance, annual plants,
whereas the Moran model is appropriate for perennial plants.

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2013.06.011
http://dx.doi.org/10.1016/j.jtbi.2013.06.011
http://dx.doi.org/10.1016/j.jtbi.2013.06.011
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jtbi.2013.06.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jtbi.2013.06.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jtbi.2013.06.011&domain=pdf
mailto:aguiar@ifi.unicamp.br
http://dx.doi.org/10.1016/j.jtbi.2013.06.011


E.M. Baptestini et al. / Journal of Theoretical Biology 335 (2013) 51–5652
The dynamics of the Moran model are as follows: consider a
gene with alleles A0 and A1 in a population with fixed number N of
haploid individuals. At each step one individual, k, is randomly
selected to reproduce and die, being replaced by the resulting
offspring. The offspring is generated by the mating of k with
another random individual k′ and it may keep the allele of either
parent, and be subsequently altered by mutation. The population
is said to be panmictic, or fully mixed, since any individual can
mate with any other. The probability Pt(m) that the population has
m alleles A0 at time t satisfies a linear equation, which can be
solved for the case of zero (Watterson, 1961; Gladstein, 1978) and
non-zero (Cannings, 1974; Gillespie, 2004; de Aguiar and Bar-Yam,
2011) mutations. Complete results for non-zero mutations were
derived only recently by mapping the Moran model into a
dynamical problem on fully connected networks where each node
represents an individual (de Aguiar and Bar-Yam, 2011).

In equilibrium, the average genetic distance between two
individuals in the population, the heterozygosity, is given approxi-
mately by

〈d〉¼ 2μN
1þ 4μN

ð1Þ

where μ is the mutation rate per gene. In de Aguiar and Bar-Yam
(2011) the Moran dynamics were extended to include multiple
genes, spatially extended populations and a condition of genetic
incompatibility that allows the development of reproductive
isolation. With these generalizations the model can be used to
describe the evolution of neutral speciation. For individuals with B
independent genes, Eq. (1) becomes

〈d〉B ¼ B〈d〉¼ B
2

4μN
1þ 4μN

� �
: ð2Þ

Here the genetic distance between individuals is measured by the
number of genes bearing different alleles, the so-called Hamming
distance.

The Moran model dynamics can be combined with network
theory, where the network topology describes the set of possible
mating events, enabling an analysis of the genetic dynamics of
structured populations. Panmictic populations are mapped into
fully connected networks (Chinellato et al., 2007). A particularly
important case arises when the population is spread over a square
region of size L� L and mating is allowed only between individuals
that are closer than a critical spatial distance SoL. This corre-
sponds to a locally connected homogeneous spatial network with
ρπS2 connections per node, where ρ¼N=L2 is the average popula-
tion density. It can be shown (de Aguiar and Bar-Yam, 2011) that
the dynamics of such a population are closely equivalent to the
panmictic case, but with an effective mutation rate given approxi-
mately by

μef ¼
μf

1þ 2μf
ð3Þ

where f ¼ L2=πS2 is the ratio of the number of potential mates in
the panmictic case to the number of potential mates in the
structured population.

The multi-gene spatial version of the Moran model can
describe speciation if a condition for genetic incompatibility is
introduced, namely, that mating is possible only between indivi-
duals that are sufficiently similar genetically. This condition
couples the genes and Eq. (2) becomes no longer exact. It is still
a good approximation if the individuals are not too different
genetically. When the genetic restriction is added, speciation via
‘isolation by distance’, or topopatric speciation becomes possible
(de Aguiar et al., 2009) and understanding the conditions for its
occurrence is of importance to evolutionary biology and biodiver-
sity. Including the effects of restricting mating by genetic
proximity in the Moran dynamics is, however, more difficult and
requires understanding the role of several variables in speciation.

In de Aguiar et al. (2009), de Aguiar and Bar-Yam (2011) and
Baptestini et al. (2013) it was shown that the occurrence of
speciation is sensitive to variation in the parameters describing
the population, increasing with decreasing population density and
with increasing mutation rate and number of genes. Taking these
effects into account, the condition of genetic incompatibility can
be included as an ansatz that can be understood as follows.

For a panmictic population, restricting mating by genetic
proximity decreases the genetic diversity of the population by
‘forcing’ the individuals to be all genetically similar. If the max-
imum allowed genetic distance for mating is G, then, in equili-
brium, 〈d〉B≈G. According to Eq. (2), and if 4μN≳1, this can be
interpreted as reducing the genome size B to an effective size
Bef ¼ 2G. However, if mating is also constrained by the spatial
distance S, the effective mutation rate increases as S decreases.
This, in turn, increases the average genetic distance between
individuals and, therefore, the size of the effective genome. The
conflict between these two effects, G contracting the genetic
diversity and S increasing it via mutations, is resolved by specia-
tion. Indeed, when 〈d〉B becomes larger than about 2G the popula-
tion becomes unstable and splits into smaller groups (species)
where the average genetic distance is restored to values close to G
and whose size is compatible with S. Writing

Bef ¼ 2Gþ ðB−2GÞP ð4Þ
the question becomes to estimate the fraction P of genes added to
the effective genome due to the spatial restriction S for a given
total genome size B, mutation rate μ and population density
ρ¼N=L2. As discussed above, increasing B and μ or decreasing ρ
facilitates speciation. In de Aguiar and Bar-Yam (2011) it was
proposed that P could be written as

P ¼ exp −
πðS−SminÞ2ρ

γ2Bμ

" #28<
:

9=
; ð5Þ

where γ is a fit parameter and

Smin ¼
ffiffiffiffiffiffiffiffiffiffiffi
P=πρ

p
ð6Þ

is the size of a neighborhood containing P individuals (see next
section for comparison with the numerical model). The functional
Gaussian form was suggested by simulations.

The condition for speciation is that

〈d〉B ¼
Bef

2
4μef N

1þ 4μef N

 !
≳βG ð7Þ

where β represents the maximum average genetic distance
between individuals that can be supported by a cohesive species
and was originally estimated as β¼ 2. If 4μef N≳1, which is the case
in our simulations, Eq. (7) leads to

S≤Smin þ SM≡Sc: ð8Þ
where

SM ¼ γ

ffiffiffiffiffiffi
Bμ
πρ

s
ln

B−βG
βG

� �� �1=4
ð9Þ

is the maximum spatial distance for speciation measured from
Smin.

This expression describes the conditions for speciation as a
function of the parameters of the problem, such as mutation rate,
spatial and genetic restrictions, genome size and population
density (de Aguiar and Bar-Yam, 2011). In this paper we compare
this theoretical result with an agent-based model that simulates
the neutral evolution of a population subjected to spatial and
genetic mating restrictions and whose individuals are either
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hermaphroditic (de Aguiar et al., 2009) or separated into males and
females (Baptestini et al., 2013). We describe these simulations in
more detail in the next section and show the comparisons in
Section 3. In Section 4 we discuss our results and their implications.
2. Topopatric speciation

A population that is spatially extended can undergo speciation
without the need for geographic isolation or even selection. If
mating occurs only between close neighbors that are genetically
similar, gene flow through the population is slow and the genomes
of individuals that are geographically far apart can become very
different (de Aguiar et al., 2009; Kopp, 2010; Hubbell, 2001;
Etienne et al., 2007; Rosenzweig, 1995). This mechanism of
isolation by distance (Wright, 1943; Martins et al., 2013) can, in
turn, lead to speciation if the conditions are right (Wake, 2009;
Irwin et al., 2005, 2001a, 2001b; Ashlock et al., 2010). These results
were demonstrated in de Aguiar et al. (2009) using agent-based
simulations. Because the numerical model has a large number of
parameters, testing all the conditions that result in speciation
becomes very hard and theoretical predictions based on explicit
formulas are of fundamental importance.

In order to test the theory proposed in de Aguiar and Bar-Yam
(2011) we simulated the dynamics of a population with N
individuals homogeneously distributed in space and evolving
according to the mating rules proposed in de Aguiar et al.
(2009). Each individual is assigned a spatial position (x,y),
1≤x; y≤L and a haploid genome with B biallelic genes, which are
labeled 0 or 1. The individuals, initially identical, accumulate
differences over time due to mutation (at rate μ) and recombina-
tion. Sexual reproduction is constrained by two critical mating
distances (de Aguiar et al., 2009). In physical space, an individual
can mate only with others located in a certain neighborhood of its
position, determined by the spatial mating distance S. Space has
periodic boundary conditions to avoid the appearance of borders
and corners. In genetic space, mating is allowed only between
individuals that are sufficiently similar, i.e., if the number of
distinct genes is no more than G, the maximum genetic mating
distance (Etienne and Haegeman, 2011; Gavrilets, 2000; Gavrilets,
2004; Hoelzer et al., 2008; Higgs and Derrida, 1991, 1992; Manzo
and Peliti, 1994). We consider two versions of the model, one in
which the population consists of individuals that are hermaphro-
ditic and one in which it is separated into males and females. In
the first case any two individuals respecting the spatial and
genetic constraints can mate. In the second case, we refer to as
sex-separated, only individuals of opposite sex can do so. Depend-
ing on the values of the model parameters, the population may
spontaneous break up into reproductively isolated groups (de
Aguiar et al., 2009; Baptestini et al., 2013; Hoelzer et al., 2008).

The main result obtained in de Aguiar and Bar-Yam (2011) is the
critical line in the S versus G plane below which speciation occurs.
For hermaphroditic populations it is given by Eq. (8). The para-
meter P (minimum number of potential mates) was introduced in
de Aguiar et al. (2009) to avoid the situation where the number of
available mates is very small: given S and G, if the number of mates
available to the reproducing individual is smaller than P, the
spatial constraint is relaxed by making S-S þ 1 until at least P
mates are available. Other important properties can be derived,
such as the number of species that arises from speciation, the
average number of individuals in a species and the average radius
of a species (de Aguiar et al., 2009; Baptestini et al., 2013).

Eq. (8) was derived for hermaphroditic populations. In this case
each individual is mapped into a node of the network and links are
established between potential mates—individuals that are geneti-
cally and spatially compatible. For sex-separated populations the
nature of the network changes considerably, since nodes repre-
senting females link only with nodes representing males, and vice-
versa. The structure is that of a bipartite network.

In the sex-separated case it is useful to define a female reduced
network, where two individuals are connected if they can mate
with a common male, and a similar male network. Each of these
networks has approximately half the nodes of the hermaphroditic
network, so the average spatial density of individuals is ρ=2. Also,
if the spatial mating restriction between males and females is S,
the maximum separation between connected individuals of the
same sex in the reduced network is 2S. Moreover, gene flow in the
female network is at least a two-step process, since it takes the
mating of a first female with a male and the mating of the male
offspring with a second female to combine the female's genes.
Therefore, the time scale of crossover events slows down by a
factor of two. Still, the analytic discussion continues to apply to the
female or male network so the form of the analytic expressions
should still be valid. We show below that Eq. (8) can indeed be
applied to the sexual model if we change ρ to ρ=2, Smin to

ffiffiffi
2

p
Smin

and S to 2S. In order to obtain good qualitative fits we also need to
change γ into ~γ . Therefore, Eq. (8) should also work for the sex-
separated case with the changes

Ssex≤Ssexmin þ SsexM ≡Ssexc ð10Þ

where

SsexM ¼ ~γ

ffiffiffiffiffiffi
Bμ
πρ

s
ln

B−βG
βG

� �� �1=4
; ð11Þ

Ssexmin ¼
ffiffiffi
2

p
Smim and the factor 1/2 in ρ=2 is absorbed in ~γ .

Eqs. (8) and (10) identify the combination of parameters that
makes speciation possible. For example, low mutation rates, which
hinder speciation, can be compensated by a large number of
participant genes or by low population density.
3. Comparing theory and simulations

Eqs. (8) and (10) give an estimate of the multidimensional
parameter region where speciation is possible. The results incor-
porate cutoffs at G¼ B=β and at S¼ Smin, which are in agreement
with numerical simulations (de Aguiar et al., 2009). Here we found
that β¼ 1:5 gives a better fit to the numerical results than the
original estimate β¼ 2 and we used this value in all cases shown in
this section. Eqs. (8) and (10) also predict speciation at large values
of S if B is sufficiently large even if the ratio G/B is kept constant.
This is in agreement with the previous results that have described
speciation in well mixed populations with infinitely large genomes
(Higgs and Derrida, 1991, 1992; Melian et al., 2012).

We performed simulations varying one parameter at a time and
plotted the results on logarithmic scale, so that several exponents
could be calculated and compared with the theoretical expres-
sions. In all the plots the solid blue line is a linear fit through the
data points (black squares) and the dashed red line is the
theoretical prediction. For each parameter that was varied, the
threshold value between speciation and non-speciation was
numerically computed five independent times and from these
values the mean and standard deviation were calculated. All
simulations were ran for 4000 generations on a 128�128 square
lattice, expect for the inset in Fig. 1(a) where L¼256.

Fig. 1 displays the results for the hermaphroditic case. In panels
(a) and (b) we show SM as a function of genome size B and
mutation rate μ. In panel (c) we show dSc a function of the
population density ρ (notice that Smin also depends on ρ). The
parameter γ was adjusted to γ ¼ 7:5 for Fig. 1(a) and (b) and to
γ ¼ 8:5 for Fig. 1(c). The inset in Fig. 1(a) shows the calculation on a



Fig. 1. Comparison between analytical (red dashed lines) and numerical (points with error bars) results for the hermaphroditic model. The solid blue lines show a linear fit of
the numerical results. (a) Log SM � Log B with ρ¼ 0:122, μ¼ 0:001, γ ¼ 7:5 and R2 ¼ 0:999 (The inset shows results for a larger spatial grid, with L¼256 and γ ¼ 8:7);
(b) Log SM � LogðμÞ with ρ¼ 0:122, B¼200, γ ¼ 7:5 and R2 ¼ 0:953; (c) Log Sc � Log ρ with B¼200, μ¼ 0:001, γ ¼ 8:5 and R2 ¼ 0:994. Fixed parameters: G/B¼0.25, t¼4,000.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Table 1
Theoretical and simulated exponents for hermaphroditic model.

Plot Value of exponent

Theoretical Simulation fit R2

Log SM � Log B 0.5 0.3870.01 0.999
Log SM � Log μ 0.5 0.4570.04 0.953
Log Sc � Log ρ −0.5 −0.570.02 0.994
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larger spatial lattice with L¼256 and γ ¼ 8:7. Table 1 summarizes
the expected and simulated exponents.

Results for the sex-separated model are displayed in Fig. 2 for
the same set of parameters used in Fig. 1, but are now compared
with Eq. (10. In this case we show SsexM and we used ~γ ¼ 4:0 for
panel (a), ~γ ¼ 6:0 for (b) and (c). Table 2 shows the expected and
simulated exponents.
4. Discussion

Spatially extended populations can break up spontaneously
into species when subjected to mutations and to spatial and
genetic mating restrictions, even in the absence of natural selec-
tion (de Aguiar et al., 2009). Numerical simulations have shown
that this mechanism, termed topopatric speciation, occurs for a
restricted range of parameters that include population density ρ,
mutation rate μ and the parameters S and G controlling the spatial
and genetic mating restrictions. Because of this large number of
independent parameters, exploring the system's phase space
becomes computationally costly and theoretical predictions are
essential. Moreover, having explicit formulas allow for a better
understanding of the role of each specific population characteristic
in the speciation process.

In this paper we have shown that the analytical result obtained
in de Aguiar and Bar-Yam (2011) provides a good description of
neutral speciation for both the hermaphroditic case and the sex-
separated case. For the sex-separated model the equations have to
be adapted to incorporate features of the corresponding network
that are not present in the hermaphroditic case.

The dependence of the critical spatial distance for speciation Sc
on the genome size B (with fixed ratio G/ıtB), mutation rate μ and
population density ρ follows closely the proposed power law with
exponents 0.5 for B and μ and −0.5 for ρ. The largest deviation
was found in the exponent of B for the hermaphroditic case,
0.3870.01. For the sex separated case, on the other hand, the
numerical value 0.4970.01 was very close to the theoretical
prediction. The best fit numerical coefficients γ or ~γ varied in
Fig. 1 between 7.5 in (a) and (b) and 8.5 in (c), and in Fig. 2 from
4.0 in (a) to 6.0 in (b) and (c). Among the possible reasons for these
variations is the lattice granularity (128�128) and the small
population (2000 individuals for panels (a) and (b) of both
figures). We tested this conjecture by running simulations on a
256�256 lattice with N¼8000 individuals, as shown in the inset
of Fig. 1(a). Not only did the hermaphroditic scaling exponent
increase to 0.4470.06 but we also obtained γ ¼ 8:7, which is very
close to the value γ ¼ 8:5 in panels (b) and (c). This provides
increased confidence that even the deviations that were observed
are due to finite size effects in the simulated populations.

The overall agreement between the analytical formula and the
simulations is quite strong. The precise results suggest that our
ansatz about the role of spatial restriction in increasing the
effective genetic variation as embodied in Eqs. (4) and (5) (de
Aguiar and Bar-Yam, 2011) provides a useful way to characterize
the dynamics of speciation in spatial populations.



Fig. 2. Comparison between analytical (red dashed lines) and numerical (points with error bars) results for the sex-separated model. The solid blue lines show a linear fit of
the numerical results. (a) Log SsexM � Log B with ρ¼ 0:122, μ¼ 0:001, ~γ ¼ 4:0 and R2 ¼ 0:991; (b) Log SsexM � Log μ with ρ¼ 0:122, B¼200, ~γ ¼ 6:0 and R2 ¼ 0:998; (c) Log Ssexc �
Log ρ with B¼200, μ¼ 0:001, ~γ ¼ 6:0 and R2 ¼ 0:992. Fixed parameters: G/B¼0.25, t¼4,000. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Table 2
Summary of theoretical and simulated values of the exponents for sex-
separated model.

Plot Value of exponent

Theoretical Simulation fit R2

Log SsexM � Log B 0.5 0.4970.01 0.991

Log SsexM � Log μ 0.5 0.5670.01 0.998

Log Ssexc � Log ρ −0.5 −0.4470.02 0.992
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