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Abstract

While recent years have seen a movement away from the gene centered view of evolution, it

continues to have a strong hold on the conceptual foundations of biology. A formal understanding

of the strengths and weakness of this view is lacking. In this article we show that the gene-

centered view directly corresponds to a mean-field approximation in the reproduction-selection

dynamics. This explains both why the gene centered view is useful and limited in application to

evolution. Effective gene fitness result from (time dependent) averages over the current organism

pool to obtain a mean-field environment for the gene. Such averaging is justified if mixing by

sequel reproduction of the population is rapid compared o trait divergence of sub-populations.

When trait-divergence is important, the mean field approximation breaks down. The latter is

particularly important over larger time scales in understanding the global properties of evolution,

where trait divergence and speciation are essential features to be understood.
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A basic formulation of evolution requires reproduction (trait heredity) with variation and

selection with competition. At a particular time, there are a number of organisms which

differ from each other in traits that affect their ability to survive and reproduce. Differential

reproduction over generations leads one organisms offspring to progressively dominate over

others and changes the composition of the population of organisms. Variations during

reproduction allows offspring to differ from the parent and an ongoing process of change

over multiple generations is possible.

One of the difficulties with this conventional view of evolution is that many organisms

reproduce sexually and the offspring of an organism are thus often as different form the

parent as other organisms that it is assumed to be competing against. Note that this

conceptual difficulty does not apply to asexually reproducing organisms. To address this

fundamental paradox, the gene-centered view was introduced. In the gene-centered view

there are assumed to be indivisible elementary units of the genome (thought of as individual

genes) that are preserved from generation to generation. Different versions of the gene

(alleles) compete and mutate rather than the organism as a whole. Thus the subject of

evolution is the allele, and, in effect, the selection is of alleles rather than organisms.

The simple picture that allelic competition (gene-centered evolution) is the fundamental

process of evolution was strongly advocated by some evolutionary biologists, while others

maintained more elaborate pictures which, for example, differentiate between vehicles of

selection (the organisms) and replicators (the genes). In this article we will review the

mathematics of some standard conceptual models of evolution to clarify the relationship

between gene-centered and organism-based notions of evolution. We will show that the

gene centered view is equivalent to a mean field approach where correlations between the

different genes are ignored. Each gene evolves in an effective environment formed within

the organism and its environment. This effective environment is an average environment

(mean field) within a sexually reproducing population (e.g. species). By showing that the

gene-centered view of evolution is a mean field approach, we can recognize why is is useful

and we can also recognize when it is invalid—when correlations are relevant.

Correlations between genes arise when the presence of one allele in one place in the

genome affects the probability of another allele appearing in another place in the genome.

One of the confusing points about the gene-centered theory is that there are two stages in

which the dynamic introduction of correlations must be considered: selection and sexual
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reproduction (gene mixing). Correlations occur in selection when the probability of survival

favors certain combinations of alleles, rather than being determined by a product of terms

given by each allele separately. Correlations occur in reproduction when parents are more

likely to mate if they have certain combinations of alleles. If correlations only occur in

selection and not in reproduction, the mean field approach continues to be at least partially

valid. However, if there are correlations in both selection and sexual reproduction then the

mean field approach and the gene-centered view break down. Indeed, there are cases for

which it is sufficient for there to be very weak correlations in sexual reproduction for the

breakdown to occur. For example, populations of organisms are distributed over space and

an assumption that reproductive coupling is biased toward organisms that are born closer

to each other can self-consistently generate allelic correlations in sexual reproduction by

symmetry breaking. Thus, this is particularly relevant to considering trait divergence of

sub-populations.

To clarify how standard models of evolution are related to this picture, it must be recog-

nized that the assumptions used to describe the effect of sexual reproduction are as important

as the assumptions that are made about selection.

A standard first model of sexual reproduction assumes that recombination of the genes

during sexual reproduction results in a complete mixing of the possible alleles not just in

each pair of mating organisms but rather throughout the species—the group of organisms

that is mating and reproducing. Offspring are assumed to be selected from the ensemble

which represents all possible combinations of the genomes from reproducing organisms.

If we further simplify the model by assuming that each gene controls a particular phenomic

trait for which selection occurs independent of other gene-related traits, then each gene would

evolve independently; a selected allele reproduces itself and its presence within an organism

is irrelevant.

Without this further assumption, selection should be considered to operate on the genome

of organism. Thus, correlations may be induced in the allele populations in the surviving

(reproducing) organisms. Nevertheless, due to the assumption of complete sexual mixing,

the correlations disappear in the offspring. From the point of view of a particular allele at

a particular gene, the complete mixing means that at all other genes alleles will be present

in the same proportion that they appear in the population—there are no allele correlations

after reproduction. Nevertheless, because selection operates on the genome, fitness depends
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not on individual genes but rather on gene combinations. As the presence of one allele

in the population changes in the population due to evolution over generations, the fitness

of another allele at a different gene will be affected. However, due to the assumption of

complete mixing in sexual reproduction only the average effect (mean field) of one gene

on another is relevant. Thus the assumption of complete mixing in sexual reproduction is

equivalent to a gene based mean-field approximation.

This qualitative discussion of standard models and their relationship to the mean-field

approximation can be shown formally. We write a two-step model for sexual reproduction:

{N(s, t)} = R[{N ′(s; t− 1)}] (1)

{N ′(s; t)} = D[{N(s; t)}] (2)

The first equation describes reproduction. The number of offspring N(s; t) having a par-

ticular genome s is written as a function of the reproducing organisms N ′(s; t − 1) from

the previous generation. The second equation describes selection. The reproducing popula-

tion N ′(s; t) is written as a function of the same generation at birth N(s; t). This reflects

selection—the differential survival of organisms from birth to reproduction. The brackets on

the left indicate that each of these equations actually represents a set of equations for each

value of the genome. The brackets within the functions indicate, for example, that each of

the offspring populations depends on the entire set of parent populations.

A mean field approximation is performed by assuming that the reproduction step (not

necessarily the selection step) depends only on the proportion of alleles and not on their

specific combinations in the reproducing population. This proportion can be written as the

number of organisms which have a particular allele si at gene i divided by the total number

of organisms:

P ′(si; t) =
1

N ′0(t)

∑
sj ,j 6=i

N ′(s; t) (3)

where s = (s1, ..., sN) represents the genome in terms of alleles si. The sum is over all alleles

of genes j except gene i. N ′0(t) is the total reproducing population at time t. According to

our assumption about reproduction, the same offspring would be achieved by a population
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with a number of reproducing organisms given by

Ñ ′(s, t) = N ′0(t)
∏
i

P ′(si; t) (4)

since this has same proportions as Eq. 3. The form of this equation indicates that the

probability of a particular genome is a product of the probabilities of the individual genes—

they are independent. Thus complete reproductive mixing assumes that:

R[{Ñ ′(s; t)}] ≈ R[{N ′(s; t)}] (5)

It follows that a complete step including both reproduction and selection can also be writ-

ten in terms of the allele probabilities in the whole population. The update of an allele

probability is:

P ′(si; t) ≈
1

N ′0(t)

∑
sj ,j 6=i

D
[
R[{Ñ ′(s; t− 1)}]

]
(6)

Given the form of Eq. 4 we could write this as an effective one-step update

P ′(si; t) = D̃[{P ′(si; t− 1)}] (7)

which describes the allele population change. Thus the assumption of complete mixing by

sexual reproduction allows us to write the evolution of a single allele in this way. However,

because Eq. 7 is a function of all the allele populations, the fitness of an allele is coupled to

the evolution of other alleles.

Eq. 4 describes the neglect of allele correlations in reproduction consistent with a mean

field approximation. It should be apparent that this is only a first approximation. It is valid

only when the allelic correlations induced by selection are weak enough to be reversed by

the gene mixing during sexual reproduction. In more realistic models correlations between

genes affect both reproduction and selection.

We can provide a specific example of breakdown of the mean field approximation using

a simple example, which has a conceptual history (discussed below) in the controversy of

the gene-centered view. We start by using a simple model for population growth to define

a fitness parameter λ. An organism that reproduces at a rate of λ offspring per individual
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per generation has a population growth described by an iterative equation:

N(t) = λN(t− 1) (8)

We obtain a standard model for fitness and selection by taking two equations of the form

Eq. 8 for the two populations N1(t) and N2(t) with λ1 and λ2 respectively, and normalize

the population at every step so that the total number of organisms remains fixed at N0. We

have that

N1(t) =
λ1N1(t− 1)

λ1N1(t− 1) + λ2N2(t− 1)
N0

N2(t) =
λ2N2(t− 1)

λ1N1(t− 1) + λ2N2(t− 1)
N0

(9)

The normalization does not change the relative dynamics of the two populations, thus the

faster-growing population will dominate the slower-growing one according to their relative

reproduction rates. If we call λi the fitness of the ith organism we see that according to

this model the organism populations grow at a rate that is determined by the ratio of their

fitness to the average fitness of the population.

Consider now sexual reproduction where we have multiple genes. In particular, consider

two nonhomologue genes [1] with selection in favor of a particular combination of alleles

on genes. Specifically, after selection, when allele A1 appears in one gene, allele B1 must

appear on the second gene, and when A−1 appears on the first gene allele B−1 must appear

on the second gene. We can write these high fitness organisms with the notation (1, 1) and

(−1,−1), and the organisms with lower fitness (for simplicity, λ = 0) as (1,−1) and (−1, 1).

When correlations in reproduction are neglected there are two stable states of the population

with all organisms (1, 1) or all organisms (−1,−1). If we start with exactly 50% of each

allele, then there is an unstable steady state. In every generation 50% of the organisms

reproduce and 50% do not. Any small bias in the proportion of one or the other will cause

[1] Homologue genes are genes on homologue chromosomes that are at the same location and thus serve the

same organismal function and allow the same alleles as a result of crossover during sexual reproduction. It

is helpful to recall that during sexual reproduction an offspring obtains half of the chromosomes of nuclear

DNA from each parent. The chromosomes are paired in function—homologous pairs. Each homologue

chromosome of the offspring is formed in a parent by a process (crossover during meiosis) that combines

segments of DNA from both parents homologues. The case of considering two homologue genes can also

be treated (see reference 4) but does not serve as useful an example for this discussion.
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there to be progressively more of one type over the other, and the population will eventually

have one set of alleles.

We can solve this example explicitly for the change in population in each generation

when correlations in reproduction are neglected. It simplifies matters to realize that the

reproducing parents (either (1, 1) or (−1,−1)) must contain the same proportion of the

correlated alleles (A1 and B1) so that:

P1,1(t) + P1,−1(t) = P1,1(t) + P−1,1(t) = P1(t)

P−1,1(t) + P−1,−1(t) = P1,−1(t) + P−1,−1(t) = P−1(t) = (1− P1(t))
(10)

The reproduction equations are:

P1,1(t) = P1(t− 1)2

P1,−1(t) = P−1,1(t) = P1(t− 1)(1− P1(t− 1))

P−1,−1(t) = (1− P1(t− 1))2

(11)

The proportion of the alleles in the generation t is given by the selected organisms:

P1(t) =
(
P ′1,1(t) + P ′1,−1(t)

)
(12)

Since the less fit organisms (1,−1) and (−1, 1) do not reproduce this is described by:

P1(t) = P ′1,1(t) =
1

P1,1(t) + P−1,−1(t)
P1,1(t) (13)

This gives the update equation:

P1(t) =
P1(t− 1)2

P1(t− 1)2 + (1− P1(t− 1))2
(14)

which has the behavior described above and shown in Fig. 1. This problem is reminiscent

of an Ising ferromagnet at very low temperature. Starting from a nearly random state with

a slight bias in the number of UP and DOWN spins, the spins align becoming either all UP

or all DOWN.

Since we can define the proportion of a gene in generation t and in generation t + 1 we
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can always write an expression for allele evolution in the form:

P (si; t) = λsiP (si; t− 1)∑
si

λsi = 1
(15)

so that we have evolution that can be described in terms of gene rather than organism

behavior.

The fitness coefficient λ1 for allele A1 and B1 is seen from Eq. 12 to be:

λ1(t) = P1(t) (16)

with the corresponding λ−1 = 1 − λ1. One difficulty with this equation is in the time

dependence of the fitness through its dependence on the changing population. In steady

stat, λ values would not change. Of course, in steady state there is no need to describe the

dynamics. One could argue that from the perspective of describing the evolution of organisms

in terms of fitness values the equation is only useful as a description of the dynamics if the

values of λ are slowly varying in time compared to the changes in P .

It is interesting, however, to consider when this picture breaks down more severely due

to a breakdown in the assumption of complete reproductive mixing. In this example, if

there is a spatial distribution in the organism population with mating correlated by spatial

location and fluctuations so that the starting population has more of the alleles represented

by 1 in one region and more of the alleles represented by −1 in another region, then patches

of organisms that have predominantly (11) or (−1 − 1) will form after several generations.

This symmetry breaking, like in a ferromagnet, is the usual breakdown of the mean field

approximation. Here, it creates correlations in the genetic makeup of the population. When

the correlations become significant then the species has a number of types. The formation of

organism types depends on the existence of correlations in reproduction that are, in effect,

a partial form of speciation—what is important is whether interbreeding occurs in reality,

not whether it is possible.

Thus we see that the most dramatic breakdown of the mean field approximation / gene

centered view occurs when multiple organism types form. This is consistent with our un-

derstanding of ergodicity breaking, phase transitions and the mean field approximation.
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Interdependence at the genetic level is echoed in the population through the development

of subpopulations. We should empathize again that this symmetry breaking required both

selection and reproduction to be coupled to gene correlations [2].

The simple example we have discussed has an interesting conceptual history. It is anal-

ogous to the example of the right-handed and left-handed rowers used by Dawkins [3] and

Lewontin [4] to argue for and against the gene-centered view. We will review their arguments

and show how they are related to this discussion.

In the rowers analogy, there are two types of rowers, left-handed and right-handed. A

boat gains an advantage in speed when it is formed from more same-handed rowers—rowers

of different handedness interfere with each other (of course this is not necessarily justified

by direct analysis of rowing but that is not the point of the example). The rowers compete

in heats of a certain number of boats. At the beginning of a race, rowers are assigned at

random to boats and the winners of each heat are replicated, replacing the ones that were

defeated. Details like the number of rowers per boat, or the number of boats per race, are

not essential to the analysis. The mathematical analysis given above corresponds to having

two rowers per boat, but it can be easily generalized.

In this picture we can see that over time, one of the types of rowers will come to dominate

the other kind of rower, because starting from a bias (even a random bias) in the number

of left or right handed rowers, it will be more likely for the dominant type to have more of

its type of rower in a boat. Thus, as pointed out by Dawkins, even though the boats are

selected as winners, the rowers reproduce to increase the number of the dominant kind. In

the analog of the gene-centered view of evolution, we see that one rower type will dominate

the other and the selection of boats has served to select rowers.

The analysis by Lewontin of this situation argued that the claim of Dawkins was mislead-

ing because it was impossible to assign meaningful fitnesses to each of the rower types. This

argument uses the result of Eq. 16 to suggest that the fitnesses vary with time and are not

[2] We note that if there is a small bias in the fitness of (11) over (−1 − 1) then the formation of the two

types will not persist due to competition between them. To enable the distinct types to persist there is

need for the existence of multiple resources each resource causing one of the types to be more fit. This is

a general feature of evolution models not restricted to the one discussed here.
[3] Dawkins, R. (1989); The Selfish Gene, 2d ed. (Oxford University Press: Oxford) p. 86
[4] Lewontin, R. in R. N. Brandon and R. M. Burian, eds. (1984); Genes, Organisms, Populations: Contro-

versies Over the Units of Selection (MIT Press, Cambridge)
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given by the underlying properties of the rowers and thus are not helpful in understanding

the evolutionary process.

This limitation of the mean-field approach however, can be seen to be only part of the

story. By introducing small correlations in rower selection, we can create two populations of

left-handed and right-handed boats, which correspond to symmetry broken subpopulations.

This is the example of trait divergence of organisms which, as discussed above, is important

for the larger scale properties of evolution.
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