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Abstract

Collaborative design is challenging because strong
interdependencies between design issues make it difficult
to converge on a single design that satisfies these
dependencies and is acceptable to all participants.
Complex systems research has much to offer to the
understanding of these dynamics. This paper describes
some insights from the complex systems perspective.

1. The Challenge: Collaborative Design
Dynamics

Collaborative design is challenging because strong
interdependencies between design issues make it difficult
to converge on a single design that satisfies these
dependencies  and is acceptable to all participants. The
dynamics of collaborative design are thus typically
characterized by (1) multiple iterations and/or heavy
reliance on multi-functional design reviews, both of
which expensive and time-consuming, (2) poor
incorporation of some important design concerns,
typically later life-cycle issues such as environmental
impact, as well as (3) reduced creativity due to the
tendency to incrementally modify known successful
designs rather than explore radically different and
potentially superior ones.

Complex systems research is devoted to
understanding, at a fundamental level, the dynamics of
systems made up of interdependent components, and has
we argue much to offer to our understanding of the
dynamics of collaborative design. Previous research on
design dynamics has focused on routine design [1] where
the design space is well-understood (e.g. as in brake or
transmission design), and the goal is to optimize a design
via incremental changes for requirements similar to those
that have been encountered many times before [2] [3].
Rapid technological and other changes have made it
increasingly clear, however, that many of the most

important collaborative design problems (e.g. concerning
software, biotechnology, or electronic commerce) involve
innovative design, radically new requirements, and
unfamiliar design spaces. In this paper we explore some
of what complex systems research can contribute to this
important challenge. We will begin by defining a simple
model of collaborative design, review the strengths and
weaknesses of current collaborative design approaches,
discuss some of the insights a complex systems
perspective has to offer, and suggest ways to better
support innovative collaborative design building on these
insights.

2. Defining Collaborative Design

A design (of physical artifacts such as cars and planes
as well as behavioral ones such as plans, schedules,
production processes or software) can be represented as a
set of issues (sometimes also known as parameters)  each
with a unique value. A complete design for an artifact
includes issues that capture the requirements for the
artifact, the specification of the artifact itself (e.g. the
geometry and materials), the process for creating the
artifact (e.g. the manufacturing process) and so on
through the artifacts’ entire life cycle. If we imagine that
the possible values for every issue are each laid along
their own orthogonal axis, then the resulting multi-
dimensional space can be called the design space,
wherein every point represents a distinct (though not
necessarily good or even physically possible) design. The
choices for each design issue are typically highly
interdependent. Typical sources of inter-dependency
include shared resource (e.g. weight, cost) limits,
geometric fit, spatial separation requirements, I/O
interface conventions, timing constraints etc.

Collaborative design is performed by multiple
participants (representing individuals, teams or even
entire organizations), each potentially capable of
proposing values for design issues and/or evaluating these
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choices from their own particular perspective (e.g.
manufacturability). Figure 1 below illustrates this model:
the small black circles represent design issues, the links
between the issues represent design issue inter-
dependencies, and the large ovals represent the design
subspace (i.e. subset of design issues) associated with
each design participant.

Figure 1: A Model for Collaborative Design.

In a large artifact like a commercial jet there may be
millions of components and design issues, hundreds to
thousands of participants, working on hundreds of distinct
design subspaces, all collaborating to produce a complete
design.

Some designs are better than others. We can in
principle assign a utility value to each design and thereby
define a utility function that represents the utility for every
point in the design space (though in practice we may only
be able to assess comparative as opposed to absolute
utility values). A simple utility function might look like
the following:
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Figure 2. A simple utility function.

The goal of the design process can thus be viewed as
trying find the design with the optimal (maximal) utility
value, though often optimality is abandoned in favor of
‘good enough’.

The key challenge raised by the collaborative design
of complex artifacts is that the design spaces are typically
huge, and concurrent search by the many participants
through the different design subspaces can be expensive
and time-consuming because design issue
interdependencies lead to conflicts (when the design

solutions for different subspaces are not consistent with
each other). Such conflicts severely impact design utility
and lead to the need for expensive and time-consuming
design rework.

3. Strengths and Limitations of Current
Approaches

Traditionally, collaborative design has been carried
out using a serialized process, wherein for example a
complete requirement set would be generated, then given
to design engineers who would completely specify the
product geometry, which in turn would then be given to
the manufacturing engineers to create a manufacturing
plan, and so on. This has the problem that if an earlier
decision turns out to be sub-optimal from the perspective
of someone making dependent decisions later on in the
design process (e.g. if a requirement is impossible to
achieve, or a particular design geometry is very expensive
to manufacture): the process of revising the design is slow
and expensive, and often only the highest priority changes
are made. The result is designs that tend to be poor from
the standpoint of later life-cycle perspectives, including
for example environmental concerns such as recyclability
that are becoming increasingly important.

More recently, several strategies have emerged for
better accounting for the interdependencies among
collaborative design participants. These include
concurrent engineering and least-commitment design:

Concurrent engineering involves the creation of
design teams with representatives of all important design
perspectives, for each distinct design subspace. Design
decisions can be reviewed by all affected design
perspectives when they are initially being considered, so
bad decisions can be caught and revised relatively quickly
and cheaply. While this approach has proven superior in
some ways to traditional serial design, it often incurs an
overwhelming burden on engineers as they attend many
hours of design meetings and review hundreds of
proposed changes per week [4].

Least-commitment design is a complimentary
approach that attempts to address the same challenges by
allowing engineers to specify a design incompletely, for
example as a rough sketch or set of alternatives, and then
gradually make the design more specific, for example by
pruning some alternatives [5] [6]. This has the advantage
that bad design decisions can be eliminated before a lot of
effort has been invested in making them fully specific,
and engineers are not forced to make arbitrary
commitments that lead to needless conflicts.

While the adoption of approaches has been helpful,
major challenges remain. Consider for example the
Boeing 767-F redesign program [4]. Some conflicts were
not detected until long (days to months) after they had
occurred, resulting in wasted design time, design rework,
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and often even scrapped tools and parts. It was estimated
that roughly half of the labor budget was consumed
dealing with changes and rework, and that roughly 25-
30% of design decisions had to be changed. Since
maintaining scheduled commitments was a priority,
design rework often had to be done on a short flow-time
basis that typically cost much more (estimates ranged as
high as 50 times more) and sometimes resulted in reduced
product quality. Conflict cascades that required as many
as 15 iterations to finally produce a consistent design
were not uncommon for some kinds of design changes.
All this in the context of Boeing’s industry-leading
concurrent engineering practices. The dynamics of current
collaborative design processes are thus daunting, and have
led to reduced design creativity, a tendency to
incrementally modify known successful designs rather
than explore radically different and potentially superior
ones.

Improving the efficiency, quality and creativity of the
collaborative innovative design process requires, we
believe, a much better understanding of the dynamics of
such processes and how they can be managed. In the next
section we will review of the some key insights that can
be derived from complex systems research for this
purpose.

4. Insights from Complex Systems Research

A central  focus of complex systems research is the
dynamics of distributed networks, i.e. networks in which
there is no centralized controller, so global behavior
emerges solely as a result of concurrent local actions.
Such networks are typically modeled as multiple nodes,
each node representing a state variable with a given value.
Each node in a network tries to select the value that
optimizes its own utility while maximizing its consistency
with the influences from the other nodes. The global
utility of the network state is simply the sum of local
utilities plus the degree to which all the influences are
satisfied. The dynamics of such networks emerge as
follows: since all nodes update their local state
concurrently based on their current context (at time T),
the choices they make may no longer be the best ones in
the new context of node states (at time T+1), leading to
the need for further changes.

Is this a useful model for understanding the dynamics
of collaborative design? We believe that it is. It is
straightforward to map the model of collaborative design
presented above onto a network. We can map design
participants onto nodes, where each participant is trying
to maximize the utility of the choices it makes for the
design subspace (e.g. subsystem) it is responsible for,
while ensuring its decisions will satisfy the relevant
dependencies (represented as the links between nodes).
As we shall see, to understand network dynamics, the
links between nodes need capture only quite abstract

properties of the dependencies. As a first approximation,
it is reasonable to model the utility of a design as the local
utility achieved by each participant plus a measure of how
well all the decisions fit together. Even though real-world
collaborative design clearly has top-down elements, the
sheer complexity of many design artifacts means that no
one person is capable of keeping the whole design in
his/her head and centralized control of the design
decisions becomes impractical, so the design process is
dominated by concurrent local activities. The remainder
of this paper will be based on this view of the
collaborative design process.

How do such distributed networks behave? Let us
consider the following simple example, a network
consisting of binary-valued nodes where each node is
influenced to have the same value as the nodes it is linked
to (Figure 3):

Node A

Node C

value = 1

value = 1

value = 0

value = 0

value = 0

Node FNode B

value = 1

Node D

Node E

Figure 3: A simple network.

 We can imagine using this network to model a real-
world situation wherein six subsystems are being
designed and we want them to use matching interfaces.
The network has converged, using the concurrent update
procedure described above,  onto a local optimum (no
node can increase the number of influences it satisfies by
a local change), so it will not reach as a result a global
optimum (where all the nodes have the same value).
Generally speaking, networks may not always converge
upon the global optimum, and in some cases (as we shall
see with dynamic attractors), a network may not converge
at all.   Insights into whether and how global optima can
be found in networks represent the heart of what complex
systems research offers to the understanding of
collaborative design.

We will discuss these insights in the remainder of this
section. The key factor determining network dynamics is
the nature of the influences between nodes. We will first
consider how such influences can be defined. We will
then consider two important distinctions: whether the
influences are linear or not, and whether they are
symmetric or not. We will finally discuss subdivided
network topologies, and the role of learning. Unless
indicated otherwise, the material on complex systems
presented below is drawn from [8].
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4.1. How Are Influences Defined?

It is, in principle, straightforward to compute what the
inter-node influences should be in order to create a
network that implements a given global utility function.
In design practice, however, we almost invariably do not
know the global utility function up front; it is revealed
incrementally, rather, by the process of defining and
evaluating different candidate designs. Utility evaluations
are apt in any case to be approximate at best, because
among other things of uncertainties about the context the
artifact will exist in. Imagine for example that our goal is
to design the most profitable airplane possible: so many
imponderable factors heavily influence this (e.g. oil
prices, wars, government subsidies for competitors) that
the only way to really know the utility of a design is to
build it and see what happens! It is usually much easier,
as a result, to define the influences directly based on our
knowledge of design decision dependencies. We know for
example that parts need to have non-overlapping physical
geometries, that electrical interfaces for connected
systems must be compatible, that weight limits must be
met, and so on.

Care must be taken in defining these influences,
however. We face the risk of neglecting to give sufficient
prominence to important concerns. Traditionally,
influences from later stages of the life cycle (e.g. the
manufacturing or recycling of the product) tend to be the
ones most neglected, and the consequences are only
encountered when that life cycle stage has been reached
and it is typically much more difficult, time-consuming
and expensive to do anything about it. Another concern is
that, while there is always a direct mapping from a utility
function to a set of influences, the opposite is not true.
Asymmetric influences, in particular, do not have a
corresponding utility function, and the network they
define does not converge to any final result. This will be
discussed below further in the section on asymmetric
networks.

4.2. Linear vs. Non-Linear Networks

If the value of nodes is a linear function of the
influences from the nodes linked to it, then the system is
linear, otherwise it is non-linear. Linear networks have a
single attractor, i.e. a single configuration of node states
that the network converges towards no matter what the
starting point, corresponding to the global optimum. Their
utility function thus looks like that shown in Figure 2
above. This means we can use a ‘hill-climbing’ approach
(where each node always moves directly towards
increased local utility) because local utility increases
always move the network towards the global optimum.

Non-linear networks, by contrast, are characterized by
having multiple attractors  and ultrametric  (bumpy)
utility functions, like that shown in Figure 4:

Figure 4. An ultrametric utility function.

Ultrametric utility functions have a fractal  structure
(i.e. self-similar at different scales) so they are bumpy at
all scales, the highest peaks also tend to be the widest
ones, and high peaks tend to be widely separated from
each other. The total number of peaks is an exponential
function of the number of nodes in the network.

A key property of non-linear networks is that search
for the global optima can not be performed successfully
by pure hill-climbing algorithms, because they can get
stuck in local optima that are globally sub-optimal.
Consider, for example, what would happen if the system
started searching in region A in Figure 4 above. Hill-
climbing (if it started from the left of region A) would
take it to the top of the local optimum, which is
substantially lower than optima in other regions of the
utility function. Hill-climbing would do even more poorly
if it started at the right of region A.

One consequence of this reality is a tendency to stick
near well-known designs. When a utility function has
widely separated optima, once a satisfactory optimum is
found the temptation is to stick to it. This design
conservatism is exacerbated by the fact that it is often
difficult to compare the utilities for radically different
designs. We can expect this effect to be especially
prevalent in industries, such as commercial airlines and
power plants, which are capital-intensive and risk-averse,
since in such contexts the cost of exploring new designs,
and the risk of getting it wrong, can be prohibitive.

A range of techniques have emerged that are
appropriate for finding optima in ultrametric utility
functions, all relying on the ability to search past valleys
in the utility function. Stochastic approaches such as
simulated annealing have proven quite effective.
Simulated annealing endows the search procedure with a
tolerance for moving in the direction of lower utility that
varies as a function of a virtual ‘temperature’. At first the
temperature is high, so the system is as apt to move
towards lower utilities as higher ones. This allows it to
range widely over the utility function and possibly find
new higher peaks. Since higher peaks are also wider ones,
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the system will tend to spend most of its time in the
region of high peaks. Over time the temperature
decreases, so the algorithm increasingly tends towards
pure hill-climbing. While this technique is not provably
optimal, it has been shown to get close to optimal results
in most cases.

Annealing, however, runs into a dilemma when
applied to systems with multiple actors. Let us assume
that at least some actors are self-interested ‘hill-climbers’,
concerned only with directly maximizing their local
utilities, while others are ‘annealers’, willing to accept, at
least temporarily, lower local utilities in order to increase
the utility in other nodes. Simulation reveals that while
the presence of annealers always increases global utility,
annealers always fare individually worse than hill-
climbers when both are present [9]. The result is that
globally beneficial behavior is not individually incented.

How do these insights apply to collaborative design?
Linear networks represent a special case and we would
expect because of this that most collaborative design
contexts are non-linear. There is a particular class of
collaborative design, however, that has been successfully
modeled as linear networks: routine design [1]. Routine
design involves highly familiar requirements and design
options, as for example in automobile brake or
transmission design. Designers can usually start the
design process near enough to the final optimum, as a
result, to be able to model the design space as having a
single attractor. Linear network models of collaborative
design have generated many useful results, including
approaches for identifying design process bottlenecks [2]
and for fine-tuning the lead times for design subtasks [3]
in routine design domains.

As we argued above, however, today’s most
challenging and important collaborative design problems
are not instances of routine design. The requirements and
design options for such innovative design challenges are
typically relatively unfamiliar, and it is unclear as a result
where to start to achieve a given set of requirements.
There may be multiple very different good solutions, and
the best solution may be radically different than any that
have been tried before. For such cases non-linear
networks seem to represent a more accurate model of the
collaborative design process.

This has important consequences. Simply instructing
each design participant to optimize its own design
subspace as much as possible (i.e. ‘hill-climbing’) can
lead to the design process getting stuck in local optima
that may be significantly worse than radically different
alternatives. Design participants must be willing to
explore alternatives that,  at least initially, may appear
much worse from their individual perspective than
alternatives currently on the table. Designers often show
greater loyalty to producing a good design for the
subsystem they are responsible for, than to conceding to
make someone else’s job easier, so we need to find

solutions for the dilemma identified above concerning the
lack of individual incentives for such globally helpful
behavior. We will discuss possible solutions in the section
below on “How We Can Help”.

4.3. Symmetric vs. Asymmetric Networks

Symmetric networks are ones in which influences
between nodes are mutual (i.e. if node A influences node
B by amount X then the reverse is also true), while
asymmetric networks do not have this property.
Asymmetric networks (with an exception to be discussed
below) add the complication of dynamic attractors, which
means that the network does not converge on a single
configuration of node states but rather cycles indefinitely
around a relatively small set of configurations. Let us
consider the simplest possible asymmetric network: the
‘odd loop’ (Figure 5):

+1

-1

A B

Figure 5. The simplest possible asymmetric
network – an ‘odd loop’.

This network has two links: one which influences the
nodes to have the same value, the other which influences
them to have opposite values. Imagine we start with node
A having the value 1. This will influence node B to have
the value –1, which will in turn influence node A towards
the value –1, which will in turn cause node B to flip
values again, and so on ad infinitum. If we plot the state
space that results we get the following simple dynamic
attractor (Figure 6):
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-1 +1

Figure 6. The dynamic attractor for the odd loop.
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More complicated asymmetric networks will produce
dynamic attractors with more complicated shapes, but the
upshot is the same: the only way to get a definite solution
(i.e. configuration of node states) with a dynamic attractor
is to arbitrarily pick one point along its length. There is
one important special case, however: feed-forward
networks. The influences in feed-forward networks are
acyclic, which means that a node never is able to directly
or indirectly influence its own value (there are in other
words no loops). Feed-forward networks do not have
dynamic attractors.

How does this apply in collaborative design settings?
Traditional serialized collaborative design is an example
of an asymmetric feed-forward network, since the
influences all flow uni-directionally from the earlier
product life cycle stages (e.g. design) to later ones (e.g.
manufacturing) with only weak feedback loops if at all. In
such settings we may not expect particularly optimal
designs but the attractors should be static and
convergence should always occur, given sufficient time.
‘Pure’ concurrent engineering, where all design
disciplines are represented on multi-functional design
teams, encourage roughly symmetric influences between
the participants and thus can also be expected to have
convergent dynamics with static attractors. Current
collaborative design practice, however, is a hybrid of
these two approaches, and thus is likely to have the
combination of asymmetric influences and influence
loops that produces dynamic attractors and therefore non-
convergent dynamics. Dynamic attractors were found to
not to have a significant effect on the dynamics of at least
some routine (linear) collaborative design contexts [3],
but may prove more significant in innovative (non-linear)
collaborative design. It may help to explain, for example,
why it sometimes takes so many iterations to account for
all the consequences of changes in complex designs [4].

4.4. Subdivided Networks

Another important property of networks is whether or
not they are sub-divided, i.e. whether they consist of
sparsely interconnected ‘clumps’ of highly interconnected
nodes, as for example in Figure 7:

Figure 7. An example of a subdivided network.

When a network is subdivided, node state changes can
occur within a given clump with only minor effects on the
other clumps. This has the effect of allowing the network
to explore more states more rapidly. Rather than having to

wait for an entire large network to converge, we can rely
instead on the much quicker convergence of a number of
smaller networks, each one exploring possibilities that can
be placed in differing combinations with the possibilities
explored by the other sub-networks.

This effect is in fact widely exploited in design
communities, where it is often known as modularization.
This involves intentionally creating subdivided networks
by dividing the design into subsystems with pre-defined
standardized interfaces, so subsystem changes can be
made with few or any consequences for the design of the
other subsystems. The key to using this approach
successfully is defining the design decomposition such
that the impact of the subsystem interdependencies on the
global utility is relatively low, because the standardized
interfaces rarely represent an optimal way of satisfying
these dependencies. In most commercial airplanes, for
example, the engine and wing subsystems are designed
separately, taking advantage of standardized engine
mounts to allow the airplanes to use a range of different
engines. This is not the optimal way of relating engines
and wings, but it is good enough and simplifies the design
process considerably. If the engine-wing
interdependencies were crucial, for example if standard
engine mounts had a drastically negative effect on the
airplane’s aerodynamics, then the design of these two
subsystems would have to be coupled much more closely
in order to produce a satisfactory design.

4.5. Imprinting

One common technique used to speed network
convergence is imprinting, wherein the network
influences are modified when a successful solution is
found in order to facilitate quickly finding (similar) good
solutions next time. A common imprinting technique is
reinforcement learning, wherein the links representing
influences that are satisfied in a successful final
configuration of the network are strengthened, and those
representing violated influences weakened. The effect of
this is to create fewer but higher optima in the utility
function, thereby increasing the likelihood of hitting such
optima next time.

Imprinting is a crucial part of collaborative design.
The configuration of influences between design
participants represents a kind of ‘social’ knowledge that is
generally maintained in an implicit and distributed way
within design organizations, in the form of individual
designer’s heuristics about who should talk to whom
when about what. When this knowledge is lost, for
example due to high personnel turnover in an engineering
organization, the ability of that organization to do
complex design projects is compromised. It should be
noted, however, that imprinting reinforces the tendency
we have already noted for organizations in non-linear
design regimes to stick to tried-and-true designs, by virtue
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of making the previously-found optima more prominent
in the design utility function.

5. How We Can Help?

What can we do to improve our ability to do
innovative collaborative design? We will briefly consider
several possibilities suggested by the discussion above.

Information systems are increasingly becoming the
medium by which design participants interact, and this
fact can be exploited to help monitor the influence
relationships between them. One could track the volume
of design-related exchanges or (a more direct measure of
actual influence) the frequency with which design
changes proposed by one participant are accepted as is by
other participants. This can be helpful in many ways.
Highly asymmetric influences could represent an early
warning sign of non-convergent dynamics. Detecting a
low degree of influence by an important design concern,
especially one such as environmental impact that has
traditionally been less valued, can help avoid utility
problems down the road. A record of the influence
relationships in a successful design project can be used to
help design future projects. Influence statistics can also be
used to help avoid repetitions of a failed project. If a late
high-impact problem occurred in a subsystem that had a
low influence in the design process, this would suggest
that the influence relationships should be modified in the
future. Note that this has the effect of making a critical
class of normally implicit and distributed knowledge
more explicit, and therefore more amenable to being
preserved over time (e.g. despite changes in personnel)
and transferred between projects and even organizations.

Information systems can also potentially be used to
help assess the degree to which the design participants are
engaged in routine vs innovative design strategies. We
could use such systems to estimate for example the
number and variance of design alternatives being
considered by a given design participant. This is
important because, as we have seen, a premature
commitment to a routine design strategy that optimizes a
given design alternative can cause the design process to
miss other alternatives with higher global optima.
Tracking the degree of innovative exploration can be used
to fine-tune the use of innovation-enhancing interventions
such as incentives, competing design teams, introducing
new design participants, and so on.

6. Conclusions

Existing collaborative design approaches have yielded
solid but incremental design improvements, which has
been acceptable because of the relatively slow pace of
change in requirements and technologies. Consider for
example the last 30 years of development in Boeing’s

commercial aircraft. While many important advances
have certainly been made in such areas as engines,
materials and avionics, the basic design concept has
changed relatively little (Figure 8):

Figure 8. The Boeing 737 (inaugurated 1965) and
the Boeing 777 (1995).

Future radically innovative design challenges, such as
cost-effective supersonic commercial transport, will
probably require, however,  substantial changes in design
processes:

Figure 9. A concept for the Boeing supersonic
commercial transport.

This paper has begun to identify what a complex
systems perspective can offer in this regard. The key
insight is that the dynamics of collaborative design can be
understood as reflecting the fundamental properties of a
very simple abstraction of that process: distributed
dependency networks. This is powerful because this
means that our growing understanding of such networks
can be applied to help us better understand and eventually
better manage collaborative design regardless of the
domain (e.g. physical vs behavioral artifacts) and type of
participants (e.g. human vs software-based).

This insight leads to several others. Most prominent is
the suggestion that we need to embrace a change in
thinking about how to manage complex collaborative
design processes.  It is certainly possible for design
managers to have a very direct effect on the content of
design decisions during preliminary design, when a
relatively small number of global utility driven high-level
decisions are made top-down by a small number of
players. But once the design of a complex artifact has
been distributed to many players, the design decisions are
too complex to be made top-down, and the dominant
drivers become local utility maximization plus fit between
these local design decisions. In this regime encouraging
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the proper influence relationships and local search
strategies is the primary tool available to design
managers. If these are defined inappropriately, we can end
up with designs that take too long to create, do not meet
important requirements, and/or miss opportunities for
significant utility gains through more creative (far-
ranging) exploration of the design space.
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