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We develop a new approach to the study of the dynamics of link utilization in complex networks using records

of communication in a large social network. Counter to the perspective that nodes have particular roles, we find

roles change dramatically from day to day. “Local hubs” have a power law degree distribution over time, with

no characteristic degree value. Our results imply a significant reinterpretation of the concept of node centrality

in complex networks, and among other conclusions suggest that interventions targeting hubs will have
significantly less effect than previously thought. © 2006 Wiley Periodicals, Inc. Complexity 12: 000-000, 2006
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ecent advances have demonstrated that the study of

universal properties in physical systems may be ex-

tended to complex networks in biological and social
systems [1-5]. This has opened the study of such networks
to experimental and theoretical characterization of proper-
ties and mechanisms of formation. In this article we extend
the study of complex networks by considering the dynamics
of the activity of network connections. Our analysis suggests
that fundamentally new insights can be obtained from the
dynamical behavior, including a dramatic time dependence
of the role of nodes that is not apparent from static (time
aggregated) analysis of node connectivity and network to-

pology.
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We study the communication between 57,158 e-mail
users based on data sampled over a period of 113 days from
log files maintained by the e-mail server at a large university
[6]. The time when an e-mail link is established between any
pair of e-mail addresses is routinely registered in a server,
enabling the analysis of the temporal dynamics of the in-
teractions within the network. To consider only e-mails that
reflect the flow of valuable information, spam and bulk
mailings were excluded using a prefilter. There were 447,543
messages exchanged by the users during a 113-day obser-
vation. We report results obtained by treating the commu-
nications as an undirected network, where e-mail addresses
are regarded as nodes and two nodes are linked if there is an
e-mail communication between them. Analysis based on
treating the network with asymmetric links (where a dis-
tinction is made between out-going links and incoming
links) gave essentially equivalent results. From the temporal
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connectivity data, a time series of topological networks can
be obtained; each represents an aggregation of links over a
time scale that is short compared with the duration of
observation (113 days). The edges forming each network in
the time series thus represent the short time opportunity for
communication as detected by the log files of the e-mail
server. Unless otherwise indicated, we set the time scale to
1 day, thus creating 113 consecutive daily networks.

Most studies of large social networks have accumulated
data over the entire time of observation, whereas here using
the smaller intervals of accumulation, we can study how the
network interactions change over time. Social network dy-
namics has historically been of interest, though data were
limited [7,8]. Recent articles have considered the times be-
tween communications [9], the creation of temporally
linked structures [10], or the addition of social links [11]. In
this article we study for the first time the dynamics of
individual importance [12].

Our first result is that networks obtained on different
days are substantially different from each other. Figure 1
shows the correlation between corresponding edges of the
113 daily networks. Surprisingly, we find that all networks
are weakly correlated, despite the expected routine nature
of the social activity. Correlations between any two net-
works have a distribution that is approximately normal,
with a mean =+ standard deviation of 0.15 * 0.05 (we adopt
this notation throughout). The low correlation implies that
the existence of a link between two individuals at one time
does not make it much more likely that the link will appear
at another time. Although all networks are weakly corre-
lated, we find that workdays and weekends are more dis-
tinct, so that workday networks and weekend networks are
more correlated among themselves (correlations 0.17 = 0.03
and 0.16 *+ 0.05, respectively) than they are with each other
(correlation 0.12 = 0.02). Remarkably, the low correlations
increase only very gradually if we form networks using data
over multiple days and never reach a high value even if
networks are made from communications over a month or
more [Figure 1(b)].

Using the nodal “degree” (the number of nodes a par-
ticular node is connected to), we characterized the central-
ity of nodes in the daily networks. Each of the daily networks
has a distribution of nodal degrees well described by a
power-law [13], with exponents in the range 2.5-2.8. Thus a
small number of highly connected nodes have great impor-
tance in the connectivity of the network. However, although
each daily network has highly connected nodes, we found
that they were not the same nodes. The degree of a node
varied dramatically over time. For each identified “local
hub,” we measured its degree from day to day over the
duration of observation. Surprisingly, we find that a large
number of local hubs exhibit a highly fluctuating time-series
(Figure 2). The corresponding distribution of degrees over
time itself follows a scale-free power-law distribution over
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(@) Matrix of correlations between pairs of daily networks sampled
July 29th, 2001 (Sunday) to November 18th, 2001 (Sunday). Days 55
and 56 were excluded from further analysis due to lack of e-mail
communication. (b) Correlation between pairs of daily networks ag-
gregated over times ranging from 1 to 40 days.

two orders of magnitude (Figure 2). The degree distribution
of a hub over time implies that the node’s degree does not
have a characteristic value. The degree is small most of the
time, but we only need to wait long enough to encounter
degrees of any size.

A broader characterization of which nodes are important
on a given day was made by comparing how the nodes were
ranked in importance. We identified the top 1000 nodes,
about 1.7% of the network according to their degree, for
each of the daily networks. We then determined, for each
pair of daily networks, the percentage of nodes that appear
in both top-ranking lists (“centrality overlap,” Figure 3). The
centrality overlap between any two networks is small, about
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Degree variations over time associated with the most connected node (local hub) identified for a particular daily network. (a—c) Time series of degrees
associated with nodes 724 (hub in day 34), 4631 (hub in day 52), and 450 (hub in day 44). Small and very large node degrees are observed. (d—f) The
corresponding log-log plots of the cumulative distributions of degrees over time associated with local hubs 724, 4631, and 450, respectively. The
distributions follow a power law (p < 0.001).

© 2006 Wiley Periodicals, Inc. COMPLEXITY
DOI 10.1002/cplx



JOron

F4

| tapraids/za5-cpix/za5-cplx/za500606/2a50306d06a | heckt | S=6 | 9/25/06 | 14:43 | Art: RA06-681 | Input-DCT-msh |

10
|

100

a0

80
= 70
s
= 60
Z
> 50
‘©
0O g

0

20

10

i 40 60 80 100
Daily Network

Top-ranking list overlap between pairs of daily networks. For each pair
of networks, the color code of the matrix denotes the percentage of
nodes that appear in the 1000 top-ranking list of the networks.

0.27 * 0.06. When considering separately workday and
weekend networks, the overlap values are about 0.33 +£0.03
and 0.20 = 0.04, respectively, consistent with the bimodal
nature of the social activity. The distinctiveness of the top
1000 nodes between daily networks is also typical for other
top-ranking list sizes. By varying the percentage of nodes in
the top-ranking list, it is found that the mean centrality
overlap, which is already small for small percentages (0.3),
actually decreases to a value of 0.2 at about 4%, before
increasing slowly to 1 when the list includes all the nodes.
The distributions of ranking overlaps are well behaved, hav-
ing a standard deviation much smaller than the mean.

We compared daily networks with the aggregate net-
work, as would be considered by other contemporary stud-
ies, by aggregating over the entire 113-day observation. Our
previous results suggest, and direct analysis confirms, that
daily networks deviate significantly from the aggregate net-
work. We determined which nodes in the daily 1000 top-
ranking list also appear in the top-ranking list of the aggre-
gate network, obtaining the binary image in Figure 4(a).
Though some nodes that are ranked high in the daily net-
works are also ranked high in the aggregate network, a
significant number are not. In particular, we find that the
centrality overlap is 0.41 = 0.03 and 0.27 *+ 0.04, for weekday
and weekends, respectively. Comparing other sizes of the
top-ranked nodes gives similar results. Perhaps even more
surprisingly, the nodes that are highly ranked in the aggre-
gate network are not even on-average important in daily
networks. To show this, we calculated the average ranking

position of the top 1000 highly connected nodes in the
aggregate network for each daily network. The average rank-
ing position over time (normalized to a fraction so that 1 is
the highest and 0 is the lowest) exhibits a weekly oscillation
from about 0.40 to 0.65. In the aggregate network these
nodes have an average ranking of 0.99. This shows that
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(a) Comparison of the aggregate network with daily networks. A binary
overlap matrix describing whether a node, included in the 1000
top-ranking list of a daily network, also appear (colored white) in the
1000 top-ranking list of the aggregate network. (b) Average dissim-
ilarity of networks aggregated over times ranging from 1 to 56 days.
Dissimilarity is measured as one minus the fractional overlap of the
1000 top-ranking nodes. The plot follows a power law (p < 0.001),
indicating that networks formed over longer time periods do not
converge to a well-defined structure.
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highly connected nodes in the aggregate network only play
a moderate role in the daily networks.

Finally, we considered a full range of networks formed by
aggregating links over time scales that are longer than a day
and shorter than the full time period [Figure 4(b)]. Relation-
ships that are similar to those found above were also ob-
served between smaller and larger time scales. Moreover,
the similarity between networks at a particular time scale
increases as a power-law, so there is no particular time scale
at which a converged structure is achieved. Thus, the net-
work dynamics follows a “multiscale” structure with net-
works at each scale forming scale-free topologies, but the
specific links in existence vary dramatically between obser-
vation time scales as well as over time.

In summary, we have demonstrated that the static to-
pology does not capture the dynamics of social networks.
The prominence of nodes (as measured by degree) within
the networks fluctuates widely from day to day, and a high
degree in the aggregate network does not predict a high
degree for individual days. Our conclusions are in sharp
contrast to previous complex network research, which em-
phasizes the importance of aggregate nodal centrality in a
static network topology [1-4,6,10,11,14-18].

Implications of a dynamic node centrality contrast with
existing analyses that consider targeting nodes with the
highest degrees to disrupt network communication or
transport. Dynamic centrality implies that targeting nodes
with the highest degrees at one time only weakly affects the
nodes that are highly connected at another time. The ap-
proach of targeting high-degree nodes has been suggested,
for example, to be an effective disease and computer virus
prevention strategy; i.e., identification and “vaccination” of
those nodes would inhibit the spread of infection or com-
puter viruses [4,6,19-22]. Our work implies that, at the very
least, a more agile strategy of monitoring and vaccinating
nodes based on centrality over time is necessary. Otherwise
a treatment based on aggregate connectivity information
will miss the impact of a node that otherwise has a low
connectivity, becoming highly connected.

The type of dynamic analysis of networks we performed
is pertinent to a wide range of network types. Whether or
not there exists an underlying fixed topological structure,
the question of which links are actually used is a relevant
one. Thus, actual travel on a transportation network and
actual interactions that occur between molecules that can
bind to each other are both examples of networks that have

an underlying structure but whose dynamic structure is
relevant to the behavior of the system over time. In addition
to the e-mail network studied here, we have found similar
results when analyzing social network data about interac-
tions found from the spatial proximity of personal Bluetooth
wireless devices [12].

The following web pages are relevant to our work: Home
page for the New England Complex Systems Institute: http://
www.necsi.org; Networks research at the New England Complex
Systems Institute: http://www.necsi.org/research/networks/;
Dan Braha research page: http://www.necsi.org/affiliates/
braha/dan_braha-Description.htm; and Yaneer Bar-Yam re-
search page: http://www.necsi.org/faculty/bar-yam.html

REFERENCES
1. Braha, D.; Bar-Yam, Y. Phys Rev E 2004, 69, 016113.
2. Albert, R.; Barabasi, A.-L. Rev Mod Phys 2002, 74, 47.
3. Amaral, L.AN.; Scala, A.; Barthélémy, M.; Stanley, H.E. Proc Natl
Acad Sci USA 2000, 97, 11149.
4. Bar-Yam, Y.; Epstein, I. R. Proc Natl Acad Sci USA 2004, 101, 4341.
5. Bar-Yam, Y. Dynamics of Complex Systems; Perseus Books: Reading,
MA, 1997.
6. Ebel, H.; Mielsch, L.-I.; Bornholdt, S. Phys Rev E 2002, 66, 035103.
7. Wasserman, S.; Faust, K. Social Network Analysis; Cambridge Uni-
versity Press: Cambridge, 1999.
8. Doreian, P.; Stokman, F. N., Eds. Evolution of Social Networks;
Gordon and Breach: New York, 1997.
9. Barabasi, A.-L. Nature 2005, 435, 207.
10. Eckmann, J. P.; Moses, E.; Sergi, D. Proc Natl Acad Sci USA 2004,
101, 14333.
11. Kossinets, G.; Watts, D. J. Science 2006, 311, 88.
12. Braha, D.; Bar-Yam, Y. NECSI Technical Report 2005-February-01,
2005.
13. Barabasi, A.-L.; Albert, R. Science 1999, 286, 509.
14. Milo, R.; Shen-0rr, S.; ltzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon,
U. Science 2002, 98, 824.
15. Jeong, H.; Tombor, B.; Albert, R.; Oltavi, Z.N.; Barabasi, A.-L. Nature
2000, 407, 651.
16. Jeong, H.; Mason, S.; Barabasi, A.-L.; Oltvai, Z.N. Nature 2001, 411,
41.
17. Ferrer, R.; Janssen, C.; SolE, R.V. Phys Rev E 2001, 63, 32767.
18. Guimera, R.; Danon, L.; Diaz-Guilera, A.; Giralt, F.; Arenas, A. Phys
Rev E 2003, 68, 65103.
19. Albert, R.; Jeong, H.; Barabasi, A.-L. Nature 2000, 406, 378.
20. Shargel, B.; Sayama, H.; Epstein, I.R.; Bar-Yam, Y. Phys Rev Lett
2003, 90.
21. Lloyd, A.L.; May, R.M. 2001, Science 292, 1316.
22. Pastor-Satorras, R.; Vespignani, A. Phys Rev Lett 2001, 86, 3200.
23. de Price, D.J.S. Science 1965, 149, 510.
24. Aiello, W.; Chung, F.; Lu, L. Proc ACM STOC 2000, 171.

© 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx

COMPLEXITY

5

AQ: 2
AQ: 4





