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Abstract

Despite global connectivity, societies seem to be increasingly polarized and fragmented.

This phenomenon is rooted in the underlying complex structure and dynamics of social sys-

tems. Far from homogeneously mixing or adopting conforming views, individuals self-organize

into groups at multiple scales, ranging from families up to cities and cultures. In this paper,

we study the fragmented structure of the American society using mobility and communica-

tion networks obtained from geo-located social media data. We find self-organized patches

with clear geographical borders that are consistent between physical and virtual spaces. The

patches have multi-scale structure ranging from parts of a city up to the entire nation. Their

significance is reflected in distinct patterns of collective interests and conversations. Finally,

we explain the patch emergence by a model of network growth that combines mechanisms of

geographical distance gravity, preferential attachment, and spatial growth. Our observations

are consistent with the emergence of social groups whose separated association and com-

munication reinforce distinct identities. Rather than eliminating borders, the virtual space

reproduces them as people mirror their offline lives online. Understanding the mechanisms

driving the emergence of fragmentation in hyper-connected social systems is imperative in the

age of the Internet and globalization.

1 Introduction

The increasing polarization of societies is becoming apparent around the world. Despite access to

global communication [1], people seem to be splitting into groups that mostly listen to their own

members [2, 3, 4]. Individual choices of association due to ideologies [5, 6, 7], occupations [8, 9],

or consumer habits [10] can drive the emergence of social polarization or fragmentation [11, 9].

While different social features affect processes of homophily and influence, in this work we study

how fundamental geographical factors also affect the large-scale structure of social interactions and

communication networks. Previous studies have proposed distance as the driving factor for social

interactions [12, 13, 14]. We show that the structure of the emergent social networks is richer than

what distance alone can explain and includes the influence of factors like administrative borders

and urban structures. It is crucial to understand the structural and geographical properties of

collective association and their relationship to the social space.

The social space is defined as the place where people meet and interact [15]. While group

cohesion is strongly influenced by internal communication, weaker external ties are necessary for

integration at larger scales, providing individuals with information and resources beyond the bor-
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ders of their own community [15, 16, 17, 18, 19, 20]. Previous studies have shown that the structure

of both strong and weak ties affects the behavior of social systems, including the spread of inno-

vation [21], business and culture [22], crime systems [23], and the development of regional and

national events [24]. Social fragmentation affects the way information flows among individuals

[25] and consequently their emergent behaviors [5, 26, 9], including political or physical conflict

[27, 28, 29, 30].

The recent availability of large-scale datasets obtained from communication or transaction

records for landlines, mobile phones, social media, and banknote circulation has considerably im-

proved our ability to study social systems [31, 32, 33, 34]. Geo-located data sources, such as

Twitter, enable direct observation of social interactions and collective behaviors with unprece-

dented detail. While the Twitter user base is known to skew younger and more urban [35, 36],

the large size of its user base and high frequency of tweets has enabled new types of studies of

networks and geo-located activities. For example, Twitter data has been utilized in studies on a

wide range of behavioral phenomena, including human migration, disease outbreaks, and patterns

of happiness and lifestyle [37, 38, 39, 40, 41, 42].

Networks of human mobility [31, 34, 43, 44, 45] and communication [10, 34, 46, 47, 48, 49, 37]

reveal the existence of geo-located communities or patches. Researchers have used Twitter data

on mobility to show where geo-located communities deviate from administrative boundaries in

Great Britain [42]. Others have generated networks of Twitter communications and examined

community formation in various countries [37] or in a natural disaster [41]. While these studies

analyze the structure of mobility or communication networks separately, we show that these two

are not independent from one another and rather that networks in physical space are mirrored in

the virtual space.

In this work, we utilize geo-located Twitter data to identify two networks in the U.S., human

mobility and communication. We show that the specific geographic patches of both networks are

very similar. We validate the significance of these patches by analyzing hashtag use by location

and find similar patterns of divergence as in the mobility and communication networks. Finally,

we build a model of network growth to understand the generic statistical properties of the natural

human dynamics observed in the data. Our model combines a distance gravity component for

cluster formation with preferential attachment and spatial growth mechanisms to allow clusters

to differentiate in geographical space and grow over time. This work provides a comprehensive

depiction of network dynamics and social fragmentation in the U.S.

2 Materials and Methods

2.1 Data

We use geo-located Twitter data to generate geographical networks based on where people travel

or communicate. The data were obtained using the Twitter Streaming Application Programming

Interface (API). We collected tweets from August 22, 2013 to December 25, 2013, totaling over 87

million tweets posted by over 2.8 million users in the U.S. A link to the raw data file is available

at: www.necsi.edu/fragmentation/data.
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2.2 Networks

We analyze mobility and communication patterns by generating geographical networks. Nodes

represent a lattice of 0.1◦ latitude × 0.1◦ longitude cells overlaid on a map of the U.S. Each

cell is approximately 10 km wide. There are about 400,000 cells comprising inhabited areas of

the U.S. Network edges reflect two types of data: mobility and communication. In the mobility

network, edges are created when a user u tweets consecutively from two locations, i and j. In the

communication network, edges are created when a user u at location i mentions another user v that

has most recently tweeted at location j. The weight of an edge represents the number of people

who either travel or communicate between i and j. These networks aggregate the heterogeneities

of human activities in a large-scale representation of social collective behaviors [50].

2.3 Methods

The term network fragmentation is often used in the literature to describe the process of network

dismantling [51, 52]. In this work, we use the term “social fragmentation” to represent the modular

structure of a social system due to absence of links and nodes. This is in line with terminology

from other works that employ community detection methods such as the Girvan-Newman method

[53].

We analyze social fragmentation by applying the Louvain method [54] with modularity op-

timization [55] to the mobility and communication networks obtained from Twitter data. The

Louvian algorithm starts by considering each node as a single community. Iteratively, nodes move

to the neighboring communities and join them to maximize modularity (M). Modularity is a scalar

value −1 < M < 1 that quantifies how distant the number of edges inside a community are from

those of a random distribution. Negative modularities occur when nodes are assigned to the wrong

communities, zero occurs when all the nodes are assigned to a single community, and higher values

represent increasingly optimal partitions as the values get closer to 1 [56, 57].

To study communities at multiple scales, we use a generalized version of modularity [54] that

includes a resolution parameter γ. In the conventional modularity equation, γ = 1 and the same

weight is given to observed links and expected links from a randomized network. In the generalized

form, γ < 1 gives more weight to the observed links, which generates larger communities, while

γ > 1 puts more weight on the randomized term and generates smaller communities. Because it

is a method with multiple maxima, we chose partitions that are robust to multiple runs of the

algorithm.

We validate the significance of the patches by observing hashtag use. We create a matrix whose

rows represent locations and columns represent hashtags. In order to observe collective behaviors,

we consider only those hashtags that were posted at least 500 times and locations with at least

20 tweets. We apply the term frequency-inverse document frequency (TF-IDF) transformation

[58, 59] to the matrices in order to normalize the hashtags (columns of the matrix). We then

apply principal component analysis (PCA) [60] to the hashtag matrix and retrieve the top 100

components, and then apply t-distributed stochastic neighbor embedding (t-SNE) [61, 62] to the

resulting PCA matrix.
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3 Results

3.1 Social Fragmentation

We first generated a mobility network of instances in which a user tweets from different locations,

representing travel (see Section 2.3). Figure 1 depicts the spatial properties of the mobility network

on a map of the U.S. in terms of degree centrality (Figure 1 (a)) and two levels of modular structure

(Figure 1 (b) and Figure 1 (c)). The degree centrality shows the density of user movements at

each geographical point. The activity is concentrated in large cities (red in Figure 1 (a)) and

decreases toward suburban and rural areas (green, blue and gray). In areas of the country with

high population density, cities merge into large regions of high activity (e.g., the East Coast

corridor). In other areas, roads are also visible, as people tweet when they travel between cities.

Highways in rural areas with higher traffic appear in green, and less traveled roads are blue.

The spatial fragmentation of social systems arises when people travel and choose which bound-

aries not to cross either directly or incidentally. Our results suggest that the U.S. mobility network

is fragmented into 20 large communities (Figure 1 (b)) whose boundaries often follow state bound-

aries but may in particular cases be parts of one state or the combination of multiple states. At

a finer scale of subdivision, these large communities of the mobility network are subdivided into

patches that typically include individual cities and their surrounding areas. There are 206 such

communities that we obtain by applying the same modularity optimization algorithm to each larger

community (Figure 1 (c)).

Following the mobility network, we generated a communication network from Twitter mentions,

shown in Figure 2. Our modularity analysis on this network shows that it also has structure of

social fragmentation that is consistent with the mobility network. Thus, while the Internet and

social media have drastically affected the dynamics of communications, the geographic structure

of online communication remains fragmented and presents a similar structure to the one obtained

from offline interactions. There are some differences as well. In contrast to the 20 modules in the

mobility network, there are 15 modules that arise in the communication network.

The borders of some communities in Figure 2 are almost the same as those in the mobility

network (Figure 1 (b)), such as the community encompassing states of the Northwest (WA, OR,

ID, and MT), the community corresponding to Michigan (MI), and the community corresponding

to Florida (FL). Ohio (OH), western Pennsylvania (PA) and West Virginia (WV) are also still in the

same patch. Meanwhile, other communities in the mobility network merge into a larger community

in the communication network. For example, the six-state region of New England (Maine (ME),

Massachusetts (MA), New Hampshire (NH), Vermont (VT), Rhode Island (RI) and Connecticut

(CT)) is a separate community in the mobility network but is combined with New York (NY), New

Jersey (NJ), and Pennsylvania (PA) in the communications network. The two patches of North

and South Carolina (NC and SC) and Virginia (VA) and Maryland (MD) are also combined into

one. This demonstrates that certain areas have a broader radius of online communication than

physical travel. Finally, Figure 2 (c) represents the smaller communities within each community in

Figure 2 (b). These patches show areas connected to urban centers and are very similar to those

of the mobility network in Figure 1 (c). Some less populous states are now single communities,

such as Montana (MT), Nebraska (NE), Kansas (KS), Oklahoma (OK), Arkansas (AR), and New

Mexico (NM), while more densely populated areas are subdivided around urban centers.

To further investigate the role of state boundaries in community formation, we quantified to

what extent each state contributes to communities for both networks (Section S1.1 and Figure
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Figure 1: Structure and fragmentation patterns of the network associated with human mobility. (a)

Spatial degree centrality of the mobility network. Colors indicate the amount of people traveling

at each location, measured by the logarithm of the degree centrality of each node (scale inset). The

mobility network was used to generate communities using modularity optimization, with distinct

colors indicating (b) 20 patches that can be visually associated to states or regions and (c) 206

smaller sub-communities within the communities of panel (b) that can be visually associated to

urban centers.
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Figure 2: Structure and fragmentation patterns of the network associated with human communi-

cation. (a) Spatial degree centrality of the communication network. Colors indicate the amount of

communication at each location, measured by the logarithm of the degree centrality of each node

(scale inset). The communication network was used to generate communities using modularity op-

timization, with distinct colors indicating (b) 15 patches that can be visually associated to states

or regions and (c) 168 smaller sub-communities within the communities of panel (b) that can be

visually associated to urban centers.
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Figure 3: Similarity of communities in the communication and mobility networks. Matrix of

the regional communities for the communication network (y-axis, n = 15) and mobility network

(x-axis, n = 20), ordered by decreasing overlap between communities. Cell colors represent the

number of nodes overlapping between the two networks in each community, normalized by the size

of the communities per row (scale inset), with no overlap indicated in white.

S1). States mostly belong to specific communities. This shows that the structure we observe is

not simply due to the effects of distance [13]. To show this, we generated artificial networks with

links weighted by only the inverse of distance or distance squared (see Section S1.2). While spatial

patches are also present in these artificial networks, the patches do not follow state boundaries

and are not consistent across both types of networks (see Figures S2 and S3). We also performed

validation of community stability and find that the number of communities and boundaries we

show are consistent and stable across multiple realizations of the algorithm (see Section S1.3 and

Figure S4). Overlapping regions across realizations can happen either because small locations flip

between large communities or because large communities are split into smaller ones.

We quantitatively compared the modular structure of the mobility and communication networks

(Figure 3) by creating a matrix where we count the number of overlapping nodes of communities

arising from the networks of communication (rows) and mobility (columns). Rows have been

normalized by the size of each community in the communication network. Some communities from

the communication network are almost identical in the mobility network and therefore show a high

overlap (red). Others are similar but not identical. A few communities from the mobility network

are merged into communities in the communication network (green and light blue). Despite the

observed differences in the networks representing two fundamentally different types of interactions,

the modular structure is remarkably consistent, revealing that there is a strong coupling between

the way people travel in physical space and communicate with each other online.

In order to further understand similarities between the mobility and communication networks,

we performed a multi-scale analysis of community structure using a generalized modularity op-
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timization algorithm that introduces a resolution parameter, γ [54]. Smaller values of γ identify

progressively larger communities, and vice-versa. The multi-scale analyses of the mobility and

communication networks are shown for some examples of γ values in Figures 4 and 5, respectively.

Partitions range from a single large module of the entire U.S. (top panels) down to urban scale

partitions (bottom panels). Some states like Pennsylvania (PA) are split into multiple commu-

nities early in the process (γ ≈ 0.4 in the mobility network), while other states like Texas (TX)

emerge as single communities (γ ≈ 1 in the mobility network) and internally fragment later in

the process. These differences are directly associated with the internal structure of social ties and

their geographical breakpoints, further explored in the Discussion (Section 4). In order to validate

these partitions, we compared them with the communities detected by Infomap [63]. This method

finds the best partition based on the flow of information in a network. The comparison shows that

the patterns obtained using Infomap are very similar to the ones obtained from the multi-scale

modularity method at specific values of γ (see Section S1.4 and Figure S5).

We compare the partitions in both networks for different values of γ by using three measures of

cluster similarity: Purity [64], Adjusted Rand Index [65] and Fowlkes-Mallows Index [66]. These

measures evaluate the overlap of partitions, with values ranging between 0 (no intersection) and

1 (perfect match). Figure 6 shows a matrix whose rows and columns represent the partitions

of the mobility and communication networks at different values of resolution (γ-mobility and γ-

communication) and whose elements show the average of the three measures of similarity. The

highest similarity between the two networks occurs at similar values of resolution (red diagonal),

showing that the relative structure of these networks is consistent across scales. Additional com-

parisons between the two networks can be found in Section S1.5, including measures of degree

centrality and edge weight (Figure S6) and an alluvial diagram (Figure S7).

The consistency between the mobility and communication networks reveals that social spaces

are not limited to the physical space. Instead, offline interactions seem to condition the structure

of online communications. Moreover, the hierarchical multi-scale structure of these networks re-

veals that smaller communities with cohesive social ties, interactions, and associations belong to

progressively larger ones. It may be expected that locations from the same community will have

more similarity than locations from different communities.

Locations from the same community show similarity in hashtag use and divergence with loca-

tions from different communities for either the mobility or communication networks (Figure 1(b)

and 2(b)). Hashtags highlight specific, shared experiences and serve as markers of social interaction

[67]. We compared hashtags for locations in the mobility and communication networks at γ = 1

using principal component analysis (PCA) followed by t-distributed stochastic neighbor embedding

(t-SNE) analysis (Figure 7 (a) and (c) for mobility and communication, respectively). See Section

2.3 for more information on the method. We colored each dot by location, matching the colors of

the communities in Figures 1 and 2, panel (b). A number of distinct colored clusters emerge, sug-

gesting that hashtag use by location corresponds to communities of the mobility or communication

networks. Some clusters appear to separate into smaller clusters near to each other, representing

sub-communities inside the communities. These patterns are statistically significant after random-

izing locations (p < 0.001), detailed in Section S1.6 and Figure S8. To compare communities to

each other based on hashtag use, we performed analysis of cosine similarity (Figure 7 (b) and (d)

for mobility and communication, respectively). Squares are colored from blue to red for increasing

similarity (color bar, right). About half of community pairs have less than 50% similarity, while the

rest have 50−90% similarity. Communities are distinct at some scales and form larger communities
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Figure 4: Multi-scale decomposition of the mobility network. Colors indicate geographical patches

detected in the mobility network for values of the resolution parameter γ varied from 0.08 − 20

(upper left to bottom right). Colors are retained across panels by the following rule: when a

community is divided into multiple sub-communities, the sub-community that is the most con-

nected to the original (“parent”) community retains the color of the parent community; the other

sub-communities are assigned new colors. The modularity for all of the panels is over 0.8.
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Figure 5: Multi-scale decomposition of the communication network. Colors indicate geographical

patches detected in the communication network for values of the resolution parameter γ varied

from 0.2− 20 (upper left to bottom right). Colors are retained across panels by the following rule:

when a community is divided into multiple sub-communities, the sub-community that is the most

connected to the original (“parent”) community retains the color of the parent community; the

other sub-communities are assigned new colors. The modularity for all of the panels is over 0.8.
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Figure 6: Similarity between the mobility and communication networks across multiple scales.

Similarity is measured by the average of the Purity, Adjusted Rank, and Fowlkes-Mallows Indexes

(color scale shown). Scale is defined by the different values of the resolution parameter γ (horizontal

and vertical axes).

at higher scales.

3.2 Model

We constructed a network growth model that combines aspects of network dynamics and human

mobility in order to show the emergence of social fragmentation. Our model combines geographical

distance gravity [14], preferential attachment to allow creation of hubs (cities), and spatial growth

to allow the growth of cities [68]. We begin with a lattice representing geographical locations, and

grow connections among them simulating the way people travel. The probability of creating an

edge between locations i and j in each time step is:

Pij ∼< knn >
ν
i

kαj

dβij
(1)

where i represents the origin of the interaction, j indicates the destination, < knn >i indicates

i’s nearest neighbors’ average degree, kj represents j’s degree, and dij represents the distance

between i and j. The exponents α, β and ν control the effects of the preferential attachment

mechanism, geographical distance gravity and spatial growth, respectively. The model reproduces

the growth of geographical clusters similar to cities (ν), their degree of attractiveness (α) and

the linkage between urban centers and surrounding areas, including neighboring cities (β). We

introduce the preferential attachment mechanism to break the symmetry of spatial connections

over time and the spatial growth mechanism to allow the city-like structures to grow.

Each location in the lattice has 4 nearest neighbors, except for locations in corners and on

edges, which have 2 and 3 neighbors, respectively. Simulations start with a random seed of three
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Figure 7: Dimensional reduction analysis of hashtag use by location and cosine similarity of commu-

nities based on hashtags. Panel (a) shows the results of t-SNE analysis on the first 100 components

of PCA analysis of hashtags in locations of the mobility network. Panels (b) shows cosine similarity

of hashtag use in the communities of the mobility network at γ = 1. Panels (c) and (d) show the

corresponding t-SNE result and cosine similarity for the communication network. Colors match

those of the communities in Figures 1 and 2, panel (b).

connected locations. Links are undirected and weighted to represent the iteration of links over

time. Origins are picked randomly (independent from destinations) if their normalized value of

< knn >
ν exceeds a random threshold. To allow all the locations in the lattice to participate in

the dynamics, for the first N time steps, we turn off the origin priority selection and let the system

choose origins from a random order of locations, where N represents the number of locations. The

probability of selecting destinations is a combination of the preferential attachment mechanism and

geographical distance gravity as shown in Equation 1. Thus, locations that are nearer to the origin

location and have a higher degree have a higher probability to be chosen. Simulations continue
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until reaching a stable state in which communities form and do not change in number.

Figure 8 shows the results of model simulations in terms of the spatial degree distribution

(top panels) as well as modular structure (bottom panels) for different values of α (rows) and

β (columns) and a fixed value of ν = 0.1. If we do not include the effects of either preferential

attachment (α = 0) or gravity (β = 0), the destinations of edges are independently distributed

among all nodes and the resulting communities have no spatial pattern. If α > β, then a few hubs

and one or two communities arise without significant geographic effects. Spatial fragmentation

arises when the gravity mechanism is stronger than the preferential attachment (β > α), either

without hubs (α = 0) or with hubs (α > 0). Increasing ν leads to more localized high-activity

areas (cities), but this also destroys localized patches, leading to lower values of modularity. For

additional results exploring variation of the spatial growth mechanism while keeping α and β

constant, see Section S1.7 and Figure S9.

We validated the model results against Twitter data by first testing whether the degree dis-

tributions from both sources are drawn from the same distribution and second comparing the

modularity values. For each set of parameters, we created 20 model realizations and analyzed

their statistical behavior. We applied the Kolmogorov-Smirnov statistical test (K-S) to compare

the average degree distribution from the model realizations to that of the mobility network, and

similarly for the communication network. Figure 9 (a) shows the values of the test results for

different values of α and β (rows and columns of the matrix) and ν = 0.1. Lower K-S values

(red) indicate more similarity, and higher K-S values (blue) indicate less similarity. The average

modularity values for the simulations in Figure 9 (a) are shown in Figure 9 (b), ranging from 0

(no modular structure) to 1 (high modular structure). We find that α = 0.9, β = 1.5, and ν = 0.1

give a good fit between simulations and observed data. Results for the K-S statistic with variation

of all three parameters are shown in Section S1.7 and Figures S10 and S11.

4 Discussion

Understanding the structure and dynamics of groups is an essential aspect of understanding social

interactions generally. The functioning of human societies arises not only from the activities of

individuals but also from their interaction and integration by means of social ties. We analyzed

the structure of social ties in the U.S. using Twitter data and found multi-scale, self-organized

fragments that span from urban up to national scales for mobility, communication, and hashtag

use. Our results show that the structures emerging from these different types of interaction are

highly consistent, revealing that social ties couple the integration and separation of groups in both

physical and virtual spaces. Despite potential biases in Twitter samples [36, 35], the similarity of

the detected communities between mobility and communication networks shows that the networks

reveal the underlying social structure.

We also constructed a model of network growth that is consistent with the statistical prop-

erty of emergence of the observed patterns from the Twitter data. Our model shows that social

fragmentation may result from short-distance interactions, in support of hierarchical models of

social network formation [69]. However, this mechanism alone does not explain the emergence of

highly connected places such as cities. We model the emergence of cities using preferential at-

tachment and spatial growth mechanisms, which increase heterogeneity in degree distribution but

may destroy spatial fragmentation if cities grow large enough. Other generative models can also

create fat-tails and power-law behaviors. For example, the emergence of city centers can also be
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Figure 8: Spatial degree distribution and modular structure for model simulations with different

values for parameters α (preferential attachment) and β (geographical distance gravity) and a fixed

value of 0.1 for ν (spatial growth). Top panels show the spatial degree distribution (from weakly

connected in blue to highly connected in red). Bottom panels show the modules of each graph,

with each color identifying a single community.
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Figure 9: Kolmogorov-Smirnov score and modularity for simulations with varying model parame-

ter, α and β, and fixed resolution parameter ν = 0.1. (a) Colors indicate the Kolmogorov-Smirnov

(K-S) score, with lower scores (red) indicating similarity between the degree distributions of the

model and the mobility network. (b) Colors indicate network modularity. Modularity is highest

at around 0.8 (dark red), similar to the actual modularity for the mobility network (0.83).

modeled as processes of optimization of social interactions and information flows or as outcomes

of multiplicative growth mechanisms [70].

The gravity model [71, 72] describes how the strength of mobility between two locations is

directly related to the population density of those locations and inversely related to the distance

between the locations, each of which is a power-law relation. Reported values for the scaling

exponents vary in the range 0.5 − 2.0 depending on the system [2, 10, 34, 13, 73, 42]. Thus, the

gravity model predicts that cities with higher population densities attract higher mobility. However,

an important limitation is that the gravity model may overestimate mobility from a low density

population to a high density population, limiting its applicability over wide geographic areas [14].

Furthermore, the gravity model does not allow for cluster growth or changes in the population of

locations. We overcome these limitations by creating a model incorporating geographical distance

gravity with preferential attachment and spatial growth.

The formation of groups and their interactions are intimately related to the formation of in-

dividual identity through self-identification and adoption of group norms and narratives. Thus,

while individual identities are highly complex and unique, there are shared patterns among mem-

bers of self-associating groups. These common patterns define the group identity, which may

involve linguistic, cultural, economic, opinion or interest differences from other groups. To in-

vestigate divergence of shared social experience, we analyzed hashtag use by location. Hashtags
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are a means of discussing shared experiences and ideas, aspects of group formation. Our analysis

demonstrated that many of the communities from the mobility or communication networks have

also distinct hashtag use. This suggests that the communities shared experiences also diverge from

other communities.

When we further examine the mobility and communication networks at different scales (Figures

4 and 5), we observe that many communities follow state lines, but a few do not, suggesting

other forces driving community formation. The large metro area around St. Louis, MO creates

a community that spills across the Mississippi River and thus the Missouri (MO)-Illinois (IL)

state line (mobility network: γ ≈ 0.7 − 20, communication network: γ ≈ 1). Eastern and western

Pennsylvania (PA) splits into two communities, roughly along the Appalachian mountain boundary

(mobility network: γ ≈ 0.4 − 1, communication network: γ ≈ 0.6 − 1). California (CA) splits into

northern and southern communities (mobility network: γ ≈ 0.7 − 1, communication network:

γ ≈ 2), following a known cultural and economic divide [74, 75]. The area of eastern Idaho (ID)

combines with Utah (UT) (mobility network: γ ≈ 0.3−0.7, communication network: γ ≈ 0.7−2),

corresponding to the area of historical Mormon settlement [76]. Geographers have proposed that

many cultural, political, and religious divisions trace back to the original settlers in each area [77],

such that America can be divided into corresponding cultural regions or “nations” [78], which has

largely been supported by recent genetic studies of the U.S. population [79]. Our observations also

support that the communities we observe reflect geographical, cultural, and economic forces that

can supersede administrative boundaries in some locations, although state boundaries remain an

important factor in social interactions.

Recent trends seem to be accelerating the forces of community formation and divergence we

observe. These forces include economic shifts, political polarization, and the rise of social media.

Analyses of work commutes have supported the rise of “megaregions,” interconnected labor mar-

kets with large cities as hubs, reminiscent of the communities we observe [80]. Migrations from

one megaregion to another may be motivated by economics, such as the migration over the last

decade from the Northeast toward the mountain West and Southwest, which have offered better

job prospects and lower housing prices [81]. In addition to economic movements, an increase in po-

litical self-sorting behavior has been observed, with people physically moving nearer to like-minded

individuals [82]. The percentage of people who identify as “consistently” liberal or conservative

has doubled to over 20% in the past two decades, and these individuals express preferences to live

near to, be close friends with, and marry those of the same political persuasion [83]. Social media

may be exacerbating this polarization, creating spaces in which users interact with like-minded

individuals and ignore opposing opinions [4]. Future work will need to examine how patterns of

group formation change and whether cultural, political, or economic factors drive this polarization.

Moving forward, there are at least two strategies for policymakers seeking to address social

fragmentation in the U.S. One is to fight social fragmentation by promoting intergroup connection

and uniformity in society. The other is to recognize that social fragmentation is present and to

incorporate it into policy decisions. This means adopting a policy of localism, which involves tai-

loring policy approaches to each specific area and fostering participation from local political groups

[84]. Our analysis suggests that division into two political groups (e.g., Republican and Demo-

crat) is not sufficient in the U.S. today and that sub-groups may require partial local autonomy to

address the multi-scale divisions present in society.
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5 Conclusion

In summary, we have used geo-located Twitter data to generate networks of U.S. mobility, com-

munication, and hashtag use and to explore how networks fragment at multiple scales. We also

developed a model of network growth that incorporates the properties of geographical distance

gravity, preferential attachment, and spatial growth and successfully replicates statistical proper-

ties of the social fragmentation patterns observed in the data. Overall, our analysis demonstrates

there are many boundaries along which fragmentation of U.S. society may be taking place. More-

over, this fragmentation represents a multi-factorial and dynamic process that is ongoing. It is

an important question how social fragmentation at multiple levels will affect the stability and

dynamism of U.S. society in the future.
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Figure Legends

Figure 1. Structure and fragmentation patterns of the network associated with human mobility.

(a) Spatial degree centrality of the mobility network. Colors indicate the amount of people traveling

at each location, measured by the logarithm of the degree centrality of each node (scale inset). The

mobility network was used to generate communities using modularity optimization, with distinct

colors indicating (b) 20 patches that can be visually associated to states or regions and (c) 206

smaller sub-communities within the communities of panel (b) that can be visually associated to

urban centers.

Figure 2. Structure and fragmentation patterns of the network associated with human commu-

nication. (a) Spatial degree centrality of the communication network. Colors indicate the amount

of communication at each location, measured by the logarithm of the degree centrality of each

node (scale inset). The communication network was used to generate communities using modular-

ity optimization, with distinct colors indicating (b) 15 patches that can be visually associated to

states or regions and (c) 168 smaller sub-communities within the communities of panel (b).

Figure 3. Similarity of communities in the communication and mobility networks. Matrix of

the regional communities for the communication network (y-axis, n = 15) and mobility network

(x-axis, n = 20), ordered by decreasing overlap between communities. Cell colors represent the

number of nodes overlapping between the two networks in each community, normalized by the size

of the communities per row (scale inset), with no overlap indicated in white.

Figure 4. Multi-scale decomposition of the mobility network. Colors indicate geographical

patches detected in the mobility network for values of the resolution parameter γ varied from

0.05 − 20 (upper left to bottom right). M stands for modularity.

Figure 5. Multi-scale decomposition of the communication network. Colors indicate geo-

graphical patches detected in the communication network for values of the resolution parameter γ

varied from 0.05 − 20 (upper left to bottom right). M stands for modularity.

Figure 6. Similarity between the mobility and communication networks across multiple scales.

Similarity is measured by the average of the Purity, Adjusted Rank, and Fowlkes-Mallows Indexes

(color scale shown). Scale is defined by the different values of the resolution parameter γ (horizontal

and vertical axes).

Figure 7. t-SNE analysis of hashtag use by location and cosine similarity of communities

based on hashtags. Panel (a) shows the results of t-SNE analysis on the first 100 components of

PCA analysis of hashtags in locations of the mobility network. Panels (b) shows cosine similarity

of hashtag use in the communities of the mobility network at γ = 1. Panels (c) and (d) show the

corresponding t-SNE result and cosine similarity for the communication network. Colors match

those of the communities in Figures 1 and 2, panel (b).

Figure 8. Spatial degree distribution and modular structure for model simulations with differ-

ent parameter values α and β and a fixed value of ν = 0.1 (see text for parameter definitions). Top

panels show the spatial degree distribution (from weakly connected in blue to highly connected in

red). Bottom panels show the modules of each graph; each color identifies a single community.

Figure 9. Kolmogorov-Smirnov score and modularity for simulations with varying model

parameter, α and β, and fixed resolution parameter ν = 0.1. (a) Colors indicate the Kolmogorov-

Smirnov (K-S) score, with lower scores (red) indicating similarity between the degree distributions

of the model and the mobility network. (b) Colors indicate network modularity. Modularity is

highest at around 0.8 (dark red), similar to the actual modularity for the mobility network (0.83).
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Supplemental Material

S1.1 Contribution of states to communities in the mobility and commu-

nication networks

To further quantify how state borders contribute to communities, we counted the number of nodes

for each community in each state and normalized to the size of the largest community. Figure S1

shows the contribution of states to communities for both the mobility and communication networks

with resolution γ = 1. For many of the states, the borders of states match their communities, while

other states have administrative borders that deviate from the ways people travel and communicate.

S1.2 Dissimilarity between communities in distance-based networks and

real networks

The strength of communications between people has an inverse relationship with their distance

from each other. Previous research has shown the relationship is inversely proportional to distance

or distance squared [12, 13]. To investigate the effect of distance or distance squared on the

formation of communities, we re-weighted the links in the mobility and communication networks

based on the distance between any two connected locations.

Figure S2 shows the detected communities in both networks with links that are rearranged to be

equal to the inverse of distance 1/dij between locations i and j. Panels (a) and (b) in this figure de-

pict the communities, and panels (c) and (d) quantify the similarity of the communities. Although

communities are geo-fragmented (36 communities in the mobility network and 30 communities in

the communication network), they are not similar to the communities in the real networks. In

fact, in some areas, communities almost overlap with each other, but in most areas, the artificial

networks end up with smaller patches that do not match with any real community. Figure S3

shows the results for the artificial networks with links that are created based on 1/d2ij between

two connected locations i and j. This dissimilarity between the communities in the distance-based

networks and the real networks is evidence of the impact of other parameters beside distance.

S1.3 Stability of communities and overlapping communities

In Figure S4, we quantify the stability of detected communities and identify areas in which commu-

nities overlap with each other. In the Louvain method, communities refer to the regions in which

nodes are more connected to each other than the rest of the network. However, due to the possible

local minima in the Louvain algorithm, some nodes may be detected as part of other communities

in the next run [85, 86]. We generated an ensemble of 120 realizations to quantify how much the

detected communities are stable across the realizations and in which areas communities overlap.

In panels (a) and (b) of Figure S4, the color bar shows how stable a location is in a given commu-

nity as a percentage of realizations. Panel (a) shows that in many areas, communities are 100%

stable, and all the areas have at least 40% stability. In some areas, larger communities split into

two communities. For example, Georgia (GA) and Alabama (AL) encompass one community in

some realizations, while in others, AL splits off as a separate community. Similarly, Indiana (IN),

Kentucky (KY) and Tennessee (TN) form a single community in some realizations, while in others,

IN manifests as a separate community. In other cases, areas sometimes exhibit a small overlapping

part between two stable communities, such as the small section in eastern New York State (NY)
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that sometimes appears as part of the red community in Figure 1. Connecticut (CN) is the state

that has the largest instability. In Figure 1, it is part of the New England community (purple com-

munity), but in many realizations it appears as part of the New York City and surrounding area

community (red community). In the communication network (panel (b)), some overlapping areas

are the size of multiple states, demonstrating that sometimes a whole state appears in another

community.

In panels (c) and (d) of Figure S4, we count the number of connections outside the community

for each location. In panel (c), black spots are the locations that only have inside community

connections, which tend to be suburban and rural areas around the cities. Red spots represent

locations with more than 100 outside community connections, which are city centers. Roads are

also clear in the figure, as people tweet on the road far from the locations where they spend most

of their time. In panel (d), the number of black spots decreases while the red areas increase as

compared to panel (c). These differences show the larger distances that people communicate with

each other versus physical travel. Red spots in these two panels have a higher chance to appear as

part of another community, especially ones that are on the border of two communities.

Panels (e) and (f) show the frequency of detected communities over the 120 realizations for

both networks. For the mobility network, all realizations generated a range of 19−22 communities,

with more than 80% of realizations having 20 communities. For the communication network, the

range was 14 − 17 communities, with more than 80% of realizations having 15 communities. This

shows the relative stability of the network, with only a few communities that were likely to split

into two.

S1.4 Comparing communities detected by the modularity optimization

and Infomap methods

In Figure S5, we show the communities detected by the Infomap method with communities de-

tected by the generalized modulariy optimization method for (a) mobility and (b) communication

networks. Compared to the modularity method in which communities represent connected areas

that deviate the most from a null model [87], the Infomap method is based on the flow of infor-

mation within the network, and communities represent the areas a random walker tends to stay

in for a long time [63]. The algorithm of community detection with Infomap is very similar to the

Louvain method [88, 63]. It starts by considering each node as a single module and joining the

neighboring nodes into supermodules in a random sequential order. Nodes move to their neigh-

boring modules to reach the largest decrease in the description length given by a map equation. If

the movement of a node to a neighboring module does not reduce its description length, it stays

in its own module. This procedure is repeated by a new sequential order in each time step, until

movements do not decrease the map equation. Movements in each level start from the formed

modules in the previous level. This hierarchical procedure continues until reaching a minimum

value for the map equation.

The Infomap method detects 512 communities in the mobility network (Figure S5-(a)) and

459 communities in the communication network (Figure S5-(b)). Most of the communities reflect

cities and their suburbs. However, in the communication network, the communities are larger,

with some in the size of the states. In panel (c) of Figure S5, we compare the similarity of detected

communities for the Infomap and modularity methods. The x-axis shows resolution parameters

for the modularity method. As a measure of similarity, the y-axis shows the average value of
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the three scores, Purity, Adjusted Rank and Fowlkes-Mallows Indexes. The highest similarity of

communities in the mobility network is about 55 percent and occurs for resolution parameters of 20

to 40. Meanwhile, the similarity of communities in the communication network is larger at about

60 percent around resolution 8 but then decreases sharply with increasing resolution parameters.

S1.5 Structural similarities of the mobility and communication networks

We compare structural properties of the mobility and communication networks by means of central-

ity measures, edge weights and multi-scale structure. The structural properties of both networks

are consistent with each other, showing an interplay between how people explore the physical space

and communicate on Twitter.

In Figure S6 (a), we show a scatter plot of degree centrality for each location in both networks

at γ = 1, colored by their eigenvector centrality in logarithmic scale. While most locations are

poorly connected, a few of them have an extremely high degree, corresponding to densely populated

areas in large cities. Locations with a higher degree centrality in both mobility and communication

networks also have high eigenvector centrality, which means that these locations are central relative

to where information flows.

Next, we compare edge weight and length for both networks in Figure S6 (b). The edge length

is estimated as the geographical distance between the locations’ centroids. Edges that have high

weights also have small lengths, reflecting daily, short distance travels seen in cities and localized

communication.

Finally, we compare the multi-scale structure of the network fragmentation. Social fragmenta-

tion can be seen at multiple scales using the generalized modularity optimization method. This

method seeks partitions at various scales by considering the resolution parameter γ. We compare

the two networks at roughly similar partition sizes (mobility and communication, respectively, at

γ=0.1 and 0.3, γ=0.2 and 0.6, γ=0.6 and 0.9, or γ=0.7 and 1.0). These pairs of γ values represent

partitions in both networks with the highest similarities (see Figure 6 in the main text). In Figure

S7, we show the partitions comparison using an alluvial diagram for each set of γ values (panels).

The alluvial diagrams map the corresponding number of nodes at each module of the mobility

network (left axis) onto each module of the communication network (right axis).

S1.6 Comparing t-SNE analyisis in real dataset with the randomized

dataset

To validate the clusters we see in the t-SNE analysis of the real data, we performed t-SNE on a

randomized dataset (see Figure S8). In the randomized dataset, we kept the number of instances

of each hashtag the same but randomized the location for each hashtag use. We compared the

distribution of the distances between locations per community in the t-SNE space for the real

dataset to those of the randomized dataset. The patterns we see in the t-SNE of the real dataset

were statistically different from those of the randomized dataset for all communities (p < 0.001).

S1.7 Additional results from varying the model parameters

In Figure S9, we show the effect of changing the spatial growth term ν in the network model. This

term gives preference to locations in which the average degree of nearest neighbors is higher. We

set the α and β exponents at 0.5 and 1.5, respectively, which generates geographical fragmentation
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patterns even with ν = 0 (left panels). As shown in figure S9 (a), increasing the ν exponent (from

left to right panels) concentrates the connections around hotspots, recreating the growth of cities.

However, Figure S9 (b) and (c) show that while small values of ν increase the number of commu-

nities and their modularity, large values of ν lead to less cohesive borders between communities

and a decrease in modularity.

Next, we investigated how changing all three parameters in the model causes deviations between

the model and the real data. We used the Kolmogorov-Smirnov (K-S) test, a measure of similarity

between two distributions, to determine the similarity of the network degree distributions, which

are a measure of network connectivity. Degree distributions for the model were calculated by

averaging over 20 realizations for each set of parameters. Figure S10 represents the similarity of

degree distributions of locations for the model versus the empirical mobility network. Moving from

the top left panel to the bottom right panel, we see that the degree distributions for the model

and the mobility network data deviate from each other as the ν exponent increases.

We also determined how changing the model parameters affects the modularity of the network.

Figure S11 shows the average modularity from 20 realizations for different values of the three

exponents. Overall, increasing the strength of the preferential attachment process (controlled by

α) and the spatial growth process (controlled by ν) destroys geographical patches and reduces

modularity. Conversely, the human mobility gravity process (controlled by β) is the only exponent

that increases these fragmented geographical patches. Note that modularity is 0.83 for the mobility

network from the Twitter data.
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Figure S1: Contribution of states to communities. Graphs depict the number of communities

detected (y-axis) in each state (x-axis) for (a) mobility and (b) communication networks gener-

ated with γ = 1. Colors (scale inset, panel (b)) indicate overlap between state and community

boundaries, with red indicating greatest overlap.
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Figure S2: Dissimilarity between communities in real networks (mobility and communication)

and artificial ones in which the weight of the links represents the inverse distance between the

connected locations i and j, 1/dij . Panels (a) and (b) show the detected communities in the

artificial mobility and communication networks, respectively. Panels (c) and (d) show the overlap

of communities between real and artificial networks of mobility and communication, respectively.

The x-axes show the communities in the real networks (labeled “Network B”), and the y-axes show

the communities in the artificial networks (labeled “Network A”). Communities are ordered by

decreasing overlap. Cell colors represent the number of nodes overlapping between the two networks

in each community, normalized by the size of the communities per row (scale inset), with no overlap

indicated in white. Although the communities from artificial networks are geo-fragmented, they

do not match the communities detected in real networks.
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Figure S3: Dissimilarity between communities in real networks (mobility and communication) and

artificial ones in which the weight of the links represents the inverse square distance between the

connected locations i and j, 1/d2ij . Panels (a) and (b) show the detected communities in the

artificial mobility and communication networks, respectively. Panels (c) and (d) show the overlap

of communities between real and artificial networks of mobility and communication, respectively.

The x-axes show the communities in the real networks (labeled “Network B”), and the y-axes

show the communities in the artificial networks (labeled “Network A”). Communities are ordered

by decreasing level of overlap. Cell colors represent the number of nodes overlapping between

the two networks in each community, normalized by the size of the communities per row (scale

inset), with no overlap indicated in white. Although the communities from artificial networks are

geo-fragmented, they do not match the communities detected in real networks.
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Figure S4: Stability and overlap of detected communities in mobility and communication networks.

We created 120 realizations for detection of communities for each network. Panels (a) and (b) show

the the stability of locations to their communities. The color bar (inset) represents the percentage

at which a location appears in the same community over all realizations; blue areas are the most

stable communities. Panels (c) and (d) show how many connections a location makes with locations

outside its community in the mobility and communication networks, respectively. The color bar

(inset) indicates the number of connections with outside areas, with red areas having more than

100 outside connections and black areas having no outside connections. Panels (e) and (f) show the

frequency of detected communities for all realizations; 20 and 15 communities are the most frequent

number of detected communities in the mobility and communication networks, respectively.
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Figure S5: Detected communities in (a) mobility and (b) communication networks using the In-

fomap method. Applying the Infomap method gives smaller communities that mostly represent

the city areas. Some detected communities in the communication network represent states. Panel

(c) shows the similarity of detected communities using the Infomap method with the communities

detected using the modularity optimization method (y-axis) at different resolution parameters (x-

axis). To measure similarity of the communities, we used the average value of the three scores, Pu-

rity, Adjusted Rank, and Fowlkes-Mallows Indexes. Detected communities in the mobility network

have more that 55 percent intersection over the resolution parameters 20-40. In the communication

network, detected communities have the most similarity at resolution 8.
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Figure S6: Similarity of network structure between the mobility and communication networks at

γ = 1. Panel (a), scatter plot of degree centrality for each location in the mobility (y-axis) and

communication (x-axis) networks, colored by the corresponding eigenvector centrality (scale on

right). Panel (b), scatter plot of the edge weights for each location in the mobility (y-axis) and

communication (x-axis) networks, colored by the edge length or distance between nodes (scale on

right). Axes and color bars are in logarithmic scale.
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Mobility γ=0.1 - Communication γ=0.3 Mobility γ=0.2 - Communication γ=0.6

Mobility γ=0.6 - Communication γ=0.9
Mobility γ=0.7 - Communication γ=1.0

Figure S7: Comparison of the mobility and communication networks at γ values with highest

similarity. In each panel, an alluvial diagram maps similarities of detected communities between

the mobility (left axis) and the communication (right axis) networks. Values of γ are chosen from

the four darkest red cells in Figure 6, which yield the highest similarity between the two networks.
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Figure S8: t-SNE analysis of hashtag use for a randomized dataset. Panel (a) shows the results of

t-SNE analysis on the first 100 components of PCA analysis of hashtags in locations of the mobil-

ity network. Panel (b) shows the corresponding t-SNE analysis for the communication network.

Instances of hashtag use have been preserved from the original datasets, but the locations have

been randomized. Colors match those of the communities in Figures 1 and 2, panel (b).
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Figure S9: Degree centrality, fragmentation, and modularity for simulations with varied values of

the resolution parameter ν (spatial growth). The value of ν is varied from 0, 0.05, 0.1, 0.5, 1 (left

to right), while α = 0.5, β = 1.5, and the size of the lattice is 576 locations. (a) Spatial degree

centrality. Nodes are colored by their degree centrality (from blue to red), and edges are plotted in

black. (b) Spatial patches, shown in varying colors. (c) Modularity as a function of ν, indicated by

color (scale below figure). Overall, increasing ν from 0 to 0.05 increases the connections between

hotspots and the modularity of communities, but as ν increases further to 0.5 or 1, the modularity

decreases and borders between communities become less clear.
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Figure S10: Similarity of degree distributions between simulated and real mobility networks. Ma-

trices show different values of the parameters α (y-axis), β (x-axis) and ν (panels, upper left to

lower right). Kolmogorov-Smirnov (K-S) scores are depicted with colors (scale on right), with the

lowest K-S values in red, indicating that the degree distributions are similar between simulated

and real mobility networks.

Figure S11: Modularity of detected communities in simulations with varying model parameters.

Matrices show different values of the parameters α (y-axis), β (x-axis) and ν (panels, upper left to

lower right). Modularity values are depicted with colors (scale on right), with the highest values

in red at ∼ 0.9. Note that modularity for the mobility network is 0.83.
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