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The impact of travel and timing in eliminating
COVID-19
Alexander F. Siegenfeld 1,2✉ & Yaneer Bar-Yam2

While the spread of communicable diseases such as coronavirus disease 2019 (COVID-19) is

often analyzed assuming a well-mixed population, more realistic models distinguish between

transmission within and between geographic regions. A disease can be eliminated if the

region-to-region reproductive number—i.e., the average number of other regions to which a

single infected region will transmit the disease—is reduced to less than one. Here we show

that this region-to-region reproductive number is proportional to the travel rate between

regions and exponential in the length of the time-delay before region-level control measures

are imposed. If, on average, infected regions (including those that become re-infected in the

future) impose social distancing measures shortly after experiencing community transmis-

sion, the number of infected regions, and thus the number of regions in which such measures

are required, will exponentially decrease over time. Elimination will in this case be a stable

fixed point even after the social distancing measures have been lifted from most of the

regions.
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The outbreak of coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), emerged in Wuhan, China, reportedly in

December 20191 and has since become a severe pandemic2.
Understanding the dynamics of disease transmission both within
and between regions3–10 can provide insight into how to elim-
inate the outbreak by imposing restrictive measures only where
the virus is locally spreading, thus minimizing larger-scale eco-
nomic impacts11–14. Regions could be cities, counties, states, or
any other partition of a population such that the disease trans-
mission occurs predominantly within (as opposed to between)
regions. The choice of region size depends on the spatial granu-
larity at which policy makers are willing and able to control
disease transmission.

Since it is impossible to model all the details of real-world
systems, identifying large-scale behaviors is necessary to deter-
mine which details matter and how15–17. For COVID-19, the
parameters for these large-scale behaviors include the average size
of an outbreak within a region and the transmissibility of the
outbreak between regions. The values of these two parameters,
both of which can be controlled with interventions, determine
whether the behavior of the epidemic within a collection of
regions (e.g., a country) is that of exponential spread until
saturation (e.g., dynamic endemic equilibrium or herd immunity)
or exponential decay until elimination. In the latter regime,
elimination will be stable and most regions within the collection
can fully open up their economies, with only local and sporadic
social distancing measures needed to contain outbreaks arising
from hidden or imported cases.

A central concept in the study of disease spread is the repro-
ductive number R, i.e., the average number of people to whom a
typical infected individual will transmit the disease18. To consider
the transmission between regions, an analogous region-to-region
reproductive number R* can be defined as the number of other
regions (including those that have been previously infected) to
which a single infected region will transmit the infection on
average19,20. Just as an outbreak cannot sustainably propagate
(i.e., elimination is stable) among individuals within a region if
R < 1, an outbreak cannot sustainably propagate among regions
within a collection if R* < 1.

Here, we analyze how local measures can support the elim-
ination of COVID-19 while avoiding large-scale lockdowns where
they are unnecessary. We find that reductions in travel and the
speed with which regions act to contain future outbreaks play
decisive roles in whether COVID-19 is eliminated from a col-
lection of regions (i.e., whether R* < 1). Such an elimination is
stable: for each outbreak caused by imported or undetected cases,
only a few regions—fewer than 1/(1 − R*) on average—need to
temporarily impose measures while the rest of the regions in the
collection remain open. If infected regions (including those that
become re-infected in the future) impose control measures
shortly after experiencing community transmission (i.e., shortly
after no longer being a “green zone”), the number of infected
regions, and thus the number of regions in which such measures
are required, will exponentially decrease over time.

Results
General model. The disease is modeled as being transmitted
among individuals within a region, with travel allowing the dis-
ease to spread between regions. A collection of regions is defined
as any partition of a population such that travel/social contact
within each region far exceeds that between them (e.g. the U.S.
could be partitioned by county or commuting zone boundaries),
in order that an infected individual is far more likely to transmit

the virus to someone within the same region rather than to
someone in a different region (i.e. transmission between regions
can be treated as a first-order perturbation). Policy makers are
assumed to act homogeneously within each region and to have
the ability to act independently between regions—thus, the choice
of how to partition a population into regions must take into
consideration the spatial granularity at which policy makers are
willing and able to make decisions. Treating larger areas as single
regions means that social distancing measures will be homo-
geneously applied to larger areas but also means that it is easier to
achieve lower per capita travel rates between such areas.

We define a region as infected if someone with the infection
enters the region. Community transmission, also known as
community spread, is said to occur when individuals within a
region are infected from an unknown source21. Conditioning on
region c being infected, we let Nc be a random variable (that could
be zero) denoting the total number of new infections that occur in
region c from the time after the region is infected to the time at
which there is no more community transmission, at which point
we define the region as no longer infected. Let pc be the
probability that an infected individual in region c will travel to
another region during the period in which that individual is
contagious. Then, the region-to-region reproductive number for
region c—which we define as the expectation of the number of
regions that region c will infect if it becomes infected—is
Rc
� ¼ E½Nc�pc. The expected outbreak size E½Nc� can be greatly

reduced if regions impose strong social distancing measures
shortly after detecting community transmission (these social
distancing measures can be lifted once community transmission
has been contained), while pc can be reduced by reducing travel
out of infected regions.

Rc
� may differ from region to region, with Rc

� for a particular
region depending not only on internal factors but also on the
network connectivity between that region and others, which in
turn depends on the sizes of regions (i.e. the scale/level of
granularity of the interventions). If the interventions are
sufficiently fast and strong such that R*—the average value of
Rc
� over a collection of regions with each region weighted by its

probability of being infected18—is less than one, then the
outbreak will not be self-sustaining within that collection of
regions. Put another way, a collection of regions can exist in one
of two regimes: a regime for which elimination is a stable fixed
point of the system and a regime for which it is unstable (see
Fig. 1). A change in policy can shift a collection of regions from
the unstable regime (R* > 1) to the stable regime (R* < 1) or vice
versa. Although the values of Nc for a collection of regions could
currently be high, R* is determined by E½Nc� and pc for the
regions that will be infected or re-infected in the future after
social distancing has eliminated the virus from currently infected
regions.

We note that if region c were infected multiple times, E½Nc�
would be higher than if it were infected once, but it is assumed
that infecting an already infected region will on average
contribute no more to disease spread than infecting a currently
uninfected region. Thus, like the basic reproductive number, this
region-to-region reproductive number overestimates the disease
spread away from the limit of most regions being uninfected by
counting a single region that has been infected multiple times
during a single outbreak as multiple regions being infected. To
the extent that a region being infected multiple times has a linear
effect on its expected total number of cases, this approximation
will not impact the values of R*. However, if a region that is
currently implementing control measures because of previous
importations receives additional imported infections, these
additional importations are not likely to have as large an effect
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as the previous ones that occurred before control measures were
implemented. Thus, R* may be overestimated when a high total
number of infections within a collection of regions makes it
common for regions to experience multiple importations during a
single outbreak. We also note that, as in SIS compartmental
models, an infected region in which the virus is contained can
later be re-infected.

It is important to keep in mind that a collection of regions can
be in the stable regime, in which the region-to-region reproductive
number for the collection R* is less than one, while, at any given
time, the reproductive number R of most regions within the
collection is greater than one. In other words, in order for R* < 1
for the collection of regions, individual regions within the
collections need only maintain R < 1 so long as community
transmission persists within them; otherwise, they can lift social
distancing measures and open up economically. For every
infection that a collection of regions with R* < 1 imports (not
including cases that were quarantined at the border), the average
number of regions within that collection that will need to impose
social distancing measures is bounded by α

P1
n¼0 ðR�Þn ¼ α=ð1�

R�Þ where α, which can be reduced with testing and contact
tracing, is the probability that an imported case will result in
community transmission within a region. Thus, border control
need not be perfect; if a collection of regions has sufficiently good
border control and policies that ensure R* < 1, elimination will
remain stable while most of the collection’s regions remain open
most of the time.

Modeling the approximate size of regional outbreaks. We now
describe a simple mathematical model to estimate Nc, not to
provide a precise description of the epidemic trajectory but rather
to clarify how various interventions may affect outbreak size. This
specific model assumes exponential growth before control mea-
sures are implemented followed by exponential decline afterwards.

However, the validity of this assumption is not essential to the
main results, which depend only on the number of infected
individuals traveling out of each region. Modeling the number of
active cases within a region using exponential growth and decay
serves mainly to give a quantitative handle on the rates of increase
and decrease in cases, but comparable results could be obtained
using other epidemic trajectories. (Similarly, although SIS and SIR
models assume an exponential distribution of generation intervals,
this particular assumption does not affect the conditions under
which such models are valid, so long as their recovery rate γ is
treated as an effective parameter.) The one key assumption is that
the reproductive number within individual regions can be reduced
below one with sufficiently strong measures such as mask-wearing,
social distancing, contact tracing, etc. This assumption has been
validated empirically by the many regions around the world in
which the number of cases has declined for a sustained period
of time.

Let ic0 be a stochastic factor that roughly corresponds to the
initial foothold that the virus gains in region c conditioning on an
infected individual entering the region, with ic0 ¼ 0 corresponding
to the case in which no one was infected or a few people were
infected but the outbreak was contained by contact tracing/
quarantine or otherwise spread no further (e.g. no community
transmission). The probability distribution of ic0 will depend on
the distribution of infectiousness22, a function of both biological
and social factors. If the outbreak is contained (ic0 ¼ 0), then the
number of active infections remains at zero for the purposes of
this model because—by definition—the outbreak has no chance
of spreading to other regions.

If the outbreak is not contained (ic0 ≠ 0), the number of active
infections is modeled as growing with time t at an exponential
rate erct . Then, after time Tc (the delay in response), the region
implements social distancing measures that cause the number of
active infections to decay as e�t=τc , where τc is the time-constant
(i.e. the inverse of the rate) of decay. Such exponential decrease
will occur if the social distancing measures, together with mask-
wearing and testing/contact tracing/quarantine, can reduce the
reproductive number (R) of the virus below one. The greater the
reduction in R, the smaller the value of τc and thus the faster the
decrease in infections. (For R < 1, R is related to τc by 1 ¼R1
0 RgðtÞet=τc dt where g(t) is the distribution of generation

intervals23.) We note that this assumption of exponential increase
followed by exponential decay after intervention assumes that the
proportion of susceptible individuals is roughly constant, i.e. that
the region intervenes before a significant fraction of its population
is infected, which is the regime with which we are concerned. To
the extent that this assumption does not hold, its use will result in
an overestimate of the number of infected individuals and thus
does not affect our main conclusions.

The number of active infections in region c as a function of
time (see Fig. 2) can therefore be written as:

icðtÞ ¼
ic0e

rct t ≤Tc

ic0e
rcTc e�ðt�TcÞ=τc t ≥Tc

�
ð1Þ

The social distancing measures can be lifted once no active
infections remain in the region or once there is no more
community transmission and the remaining infections can be
contained with contact tracing. Solving for ic(t)= 1 (assuming
ic0 ≠ 0) yields an approximate duration for the social distancing
measures of

τcðrcTc þ ln ic0Þ ð2Þ
As the number of cases becomes increasingly small, testing and
contact tracing become increasingly effective and can hasten the

Transmission between regions
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Fig. 1 Phase diagram of COVID-19 for a collection of regions. Elimination
can either be stable or unstable; the stability of elimination is a function of
(1) the average total number of cases that will result from the disease being
transmitted to a region (which depends on, among other factors, how
quickly regions locally impose social distancing measures if they experience
community transmission), and (2) the probability that an infected individual
in one region will infect an individual in another (which depends on the rate
of travel between regions). Note that the stable regime does not require
that every region implement social distancing measures but rather only
those with active community transmission. Thus, once elimination is
achieved, it can be maintained while most regions remain economically
open, with outbreaks caused by hidden or imported cases contained by
social distancing measures that are localized in both space and time. Image
source: ref. 25.
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end of community transmission, thereby allowing the social
distancing measures to be lifted. The probability that the number
of infections will rebound after the social distancing measures are
lifted—in which case an additional phase of such measures will be
needed, as in the Imperial College report24—will depend on the
probability of importation from other regions, which in turn will
depend on the region-to-region reproductive number R*. Even
though the virus can be re-imported, as long as R* < 1, the
number of infected regions will on average decrease over time,
since re-importation events are included in R*.

Modeling transmission between regions. Each infected region c
infects a currently uninfected region with a probability rate
proportional to the number of active infections ic(t) times the
probability rate pc that an infected individual will travel to an
uninfected region. The number of new infected regions spawned
by region c can thus be modeled as a Poisson process with rate
ic(t)pc. As described above, this modeling assumption over-
estimates the spread of the disease to new regions by counting a
single new region that has been infected multiple times (possibly
by multiple other regions) as multiple new infected regions. The
smaller the number of regions infected and the smaller the
probability of one region infecting another, the smaller the
probability that the same region will be infected twice. None-
theless, for certain regional connectivity networks, this model
may overestimate R*. (Our main conclusions are unaffected
because R* will be less than one if its overestimate is.)

Let pc0 be the per capita probability rate before time Tc of
individuals in region c traveling to other regions and pc1 be the
probability rate afterwards (pc1 will be less than pc0 if travel is
discouraged and/or restricted at the time social distancing
measures are implemented). The number of new regions that
are infected by region c will then be a Poisson random variable

with a mean of

ic0p
c
0

Z Tc

0
erctdt þ ic0p

c
1e

rcTc

Z τcðrcTcþln ic0Þ

0
e�t=τc dt ð3Þ

¼ ic0 pc0
ercTc�1

rc
þ pc1τc ercTc � 1

ic0

� �� �
ic0 > 0

0 ic0 ¼ 0

(
ð4Þ

Taking the expected value over ic0 (and allowing for a slight
overestimate of Rc

� by treating the 1
ic0
term as negligible when

ic0 > 0) yields

Rc
� ¼ E½Nc�pc ¼ E½ic0� pc0

ercTc � 1
rc

þ pc1τce
rcTc

� �
ð5Þ

(The value of R* for a collection of regions is then an
appropriately weighted average of Rc

� over that collection, as
described above.)

Estimating R* for COVID-19. In order to better understand the
extent of the measures required to achieve R* < 1, we estimate the
values of the parameters in Eq. (5) (see Fig. 3 and Methods) in
order to determine Rc

� as a function of the time-delay before social
distancing measures are enacted, as shown in Fig. 4. Note that the
time-delay is measured from the time at which exponential
growth begins to occur—which could be as early as the beginning
of community transmission within the region—not the time at
which exponential growth is first measured. The latter may lag
the former due to delays in testing and the possibility of pre-
symptomatic/asymptomatic spread.

Discussion
Our analysis and parameter estimates are conservative and are
therefore likely to overestimate R*, meaning that there may be
more room for error than Fig. 4 suggests. However, given the
considerable uncertainty surrounding pandemics and the
impossibility of precisely predicting their trajectories25, R* should
be reduced as much as possible so as not to take any chances, as
well as so that the virus will be eliminated (and economies more
fully reopen) as quickly as possible. Since R* is proportional to
both E½Nc� and the travel rates between regions, any intervention
that reduces the sizes of outbreaks within regions and/or travel
between them will also reduce R*. In the language of Eq. (5) (see
Table 1):

● A reduction in travel from region c results in a linear
reduction in Rc

� through pc0 and pc1.
● Improvements in testing, contact tracing, and quarantine

reduce Rc
� through E½ic0�, rc, and τc.

● Preemptive measures (i.e. measures before Tc, including when
no spreading has been detected) such as mask-wearing and
the reduction of large gatherings reduces the probability of a
super-spreader event as well as general transmission, reducing
Rc
� through both E½ic0� and rc. Because—in the absence of

interventions—a small fraction of COVID-19 cases cause
most of the spread26,27, the reduction of super-spreader
events can have an outsized impact.

● Reductions in rcTc not only exponentially reduce Rc
� (as well

as the total number of infections within the region) but also
linearly reduce the amount of time for which the social
distancing measures must remain in place. Early-detection
systems28,29 and more comprehensive testing may greatly
reduce Tc.

● Stronger social distancing measures (after time Tc) decrease
τc, which results in a linear decrease in both Rc

� and the time
for which the distancing measures must remain in place.

Fig. 2 Representative epidemic trajectory of an outbreak within a single
region. The number of active infections ic in a region c according to the
model described by Eq. (1) are shown as a function of time. The time at
which community transmission begins is defined as t= 0. At t= Tc (a
duration of Tc after the start of community transmission), control measures
that reduce the reproductive number of the virus to less than one are
implemented. At t= Tc, the size of the outbreak is ic0e

rcTc where ic0 is a
stochastic factor and rc is the rate of exponential growth without the control
measures. In order to eliminate the community transmission, we estimate
that the control measures must remain in place for a duration of
approximately τcðrcTc þ ln ic0Þ (see Eq. (2)), where τ�1

c is the rate of
exponential decay in the number of infections under the control measures.
Thus, the longer the region waits to enact the measures, the longer the total
amount of time they must remain in place.
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We conclude with a few comments. First, without the timely
implementation of control measures that reduce the local
reproductive number to less than one, restricting travel from
infected regions serves only to delay the spread of the outbreak, as
found in other studies30–36. However, when a reduction in travel
is coupled with such measures, the travel reduction will not only
delay the spread of the outbreak but in some cases will also be the
determining factor in whether or not the outbreak is eliminated.
(If R* < 1 can be achieved without reducing travel, travel
reductions can greatly decrease the duration and total case count
of the epidemic by further reducing R*.) Empirically, travel

restrictions, when combined with other sufficiently strong inter-
ventions, have been found to substantially curb the COVID-19
epidemic37.

Second, because Rc
� depends exponentially on Tc, the longer a

region waits to implement social distancing measures, the more
important it becomes to act without delay. It is important to note,
however, that there is no advantage to delaying for even a short
time. Immediately implementing social distancing measures as
soon as there is evidence of the disease spreading within the
region will not only reduce the total amount of time for which
such measures must remain in place but will also exponentially
reduce the probability of infecting or re-infecting another region.
Thus, there is no tradeoff here between health and economics—
acting quickly will reduce the duration of both the disease and the
economic harm.

Third, practically speaking, all regions within which the virus is
spreading must implement and maintain control measures that
reduce the local reproductive number to less than one until the
virus has been eliminated or contained. If a locale experiences
another outbreak of community transmission (e.g. because the
virus was re-imported), sufficiently strong interventions should
be implemented in a large enough region around that locale so
that the per capita rate of travel out of the region is sufficiently
low. Per capita travel rates between regions do not have to be
zero, but they must be small—precisely how small depends on the
parameters in Eq. (5). In the event that some regions “defect” by
not containing their outbreaks (thereby putting other regions at
risk), other regions must either quarantine travelers from those
regions or maintain precautions that keep their local reproductive
numbers below one to avoid further outbreaks. Due to the higher

Fig. 4 Dependence of the region-to-region reproductive number on travel
policies and the time delay before regions that experience community
transmission impose social distancing measures. Each curve depicts,
under different travel policies, the average number of regions Rc� to which
region c will transmit the disease as a function of the time delay Tc between
when region c experiences community transmission and when it imposes
social distancing measures (Eq. (5)). If the region-to-region reproductive
number R* (a weighted average of Rc� over a collection of regions) is less
than one, the number of infected regions will exponentially decrease and
the elimination of the disease within that collection of regions will be stable;
otherwise, the number of infected regions will increase until saturation.
Parameter values: All curves use average initial foothold E½ic0� ¼ 3:7,
inverse exponential decline rate τc = 15 days, and exponential growth rate
rc = 0.228 day−1. Solid curve: no travel reduction; the per capita travel rates
out of region c before and after Tc are, respectively, pc0 ¼ pc1 ¼ 0:004 day−1.
Dashed curve: 10-fold (responsive) travel reduction after time Tc; pc0 ¼
0:004 day−1 and pc1 ¼ 0:0004 day−1. Dotted curve: general (preemptive)
10-fold travel reduction; pc0 ¼ pc1 ¼ 0:0004 day−1. Note that some of these
parameter estimates are conservative and are likely to overestimate Rc� as a
function of Tc—see Methods for discussion.

Fig. 3 Logarithmic plots of confirmed cases by date of symptom onset in
China and Italy. a The daily number of confirmed cases in China—by date
that these patients self-reported as the onset of their symptoms—are
shown as dots on a logarithmic scale. The solid lines are the best ordinary
least squares linear fits to the natural logarithm of the number of cases: For
Jan. 11-23 (up until the lockdown), the slope (in units of day−1) is 0.228
(R2 = 0.991, 95% confidence interval (CI) [0.214, 0.242]), which
corresponds to a doubling time of 3.04 days. For Feb. 2-5 the slope is
−0.145 (R2= 0.999, 95% CI [−0.160, −0.131]), which corresponds to a
halving time of 4.78 days. Data are from the Chinese Center for Disease
Control and Prevention38, which includes cases diagnosed through Feb. 11.
Not pictured: There is a drop in cases with onsets of symptoms after Feb.
538, likely due to many of those cases being diagnosed after Feb. 11. b The
daily number of confirmed cases in Italy by date of symptom onset are
shown as dots on a logarithmic scale (data are from Italian authorities47).
The best ordinary least squares linear fits are shown as solid lines and have
slopes (in units of day−1) of 0.262 (R2= 0.927, 95% CI [0.202, 0.322]) for
Feb. 16-25, 0.123 (R2= 0.923, 95% CI [0.102, 0.144]) for Feb. 25 - Mar. 10,
and −0.068 (R2= 0.901, 95% CI [−0.078, −0.058]) for Mar. 13 - Apr. 5.
The change in the exponential growth rate from 0.262 to 0.123 likely
occurred due to partial measures implemented by Italy, but it was not until
a nationwide lockdown was implemented on March 9 that exponential
growth changed to exponential decline. The rate of decline is much slower
in Italy than in China, perhaps due to China’s stronger lockdown
enforcement and contact tracing/quarantine measures.
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rates of travel between neighboring regions, extra precautions are
necessary in a region that has a neighbor with widespread disease
transmission.

Finally, like transmission within a region, transmission
between regions is an exponential process. At first the number of
infected regions is deceptively small, but if R* > 1, this number
exponentially grows. If, however, a collection of regions adopts a
set of protocols that achieves R* < 1, sustained propagation of the
disease between the regions will not be possible, and future
outbreaks caused by importations will die out while leaving most
regions within the collection unaffected.

Methods
Estimating COVID-19 parameters. The doubling time of the epidemic can vary
from location to location and depends on pre-lockdown interventions (see e.g. the
change in the growth rate for Italy in Fig. 3). Using the number of confirmed cases
in China by date of symptom onset (rather than by date of diagnosis)38 yields a
doubling time of 3.04 days in the period leading up to the Jan. 23 lockdown, which
corresponds to rc = 0.228 day−1 (Fig. 3). Some studies estimated the doubling time
for COVID-19 at approximately 7 days39,40, but even a 5-day doubling period is
implausibly long, given that in various countries, even with some preventative
measures, the number of infections increased by far more than a factor of 64 over a
30 day period41. Part of the difficulty in estimating the doubling time from the
initial period of transmission is that ‘super-spreader’ events may play an important
role in the transmission process22,26,27. The presence of super-spreader events
indicates that the transmission process may be dominated by relatively uncommon
events and that therefore standard statistical approaches may underestimate the
rate of spread—and thus overestimate the doubling time—when the total number
of cases is still small42. (Overestimates of the doubling time lead to underestimates
of R0.) Furthermore, due to heterogeneity from both social and biological factors in
transmission rates among various subgroups in a population, the expected growth
rate in the very earliest phase of an epidemic depends on the subgroups in which
the disease is initially introduced and may not be reflective of the true reproductive
number18.

While ic(t) is equal to the number of active infections rather than the daily
number of new cases, the doubling time for each will be equal during a period of
exponential growth, and therefore the exponential rate of growth of the daily
number of new cases can be used to estimate rc. We note that a doubling time of
3 days will likely be a substantial overestimate for regions that, even when cleared
of the virus, still maintain some precautionary measures such as mask-wearing,
working from home when possible, and avoiding large gatherings.

From this growth rate r = 0.228 day−1 in China before the Jan. 23 lockdown,
the basic reproductive number R0 (which also varies by location and time) can be
calculated for China before Jan. 23 using

1
R0

¼
Z 1

�1
gðtÞe�rtdt ð6Þ

where g(t) is the distribution of generation intervals23. Empirically, we generally
observe the distribution of serial intervals (the times between the onsets of
symptoms in two successive cases in a transmission chain) rather than the
distribution of generation intervals (the times between two successive infections in
a transmission chain)43. The means of the two distributions will, however, be the
same. The distribution of generation intervals is affected by non-pharmaceutical
interventions; for example, if infected individuals are quarantined, the transmission
that is not prevented will more likely occur at shorter generation intervals. In the
period before the Jan. 23 lockdown, the mean serial interval (which equals the
mean generation interval) was estimated to be 7.8 days, significantly longer than
estimates of 5.1 days and 2.6 days for the time periods Jan. 23-29 and Jan. 30-Feb.
13, respectively44. As we are estimating R0 in China before Jan. 23, we focus on the
distribution of generation intervals from that period (with the mean of 7.8 days). If
all transmission occurred at the estimated mean generation interval of 7.8 days,
R0 = e7.8r = 5.9. However, due to the spread of generation intervals, R0 = 5.9 will
be a substantial overestimate. R0 can be underestimated by approximating the
distribution of generation intervals g(t) by the distribution of serial intervals

(estimated as a normal distribution with mean 7.8 days and standard deviation
5.2 days44), which yields R0 = 2.9. (R0 = 2.9 is an underestimate because the
distribution of serial intervals generally has a larger variance than the distribution
of generation intervals, and serial intervals, unlike generation intervals, can be
negative43.) Thus, for China before Jan. 23, 2.9 < R0 < 5.9, but without a
distribution of generation intervals it is hard to be significantly more accurate. We
estimate R0 = 3.7, which can be obtained by taking the distribution of generation
intervals g(t) to be uniformly distributed between 0 and 15.6 days (15.6 being
chosen so that the mean generation interval is 7.8 days).

The values of τc that can be achieved depend on the effectiveness of the social
distancing measures. The data from China (see Fig. 3) indicate a halving time of as
few as 4.78 days is achievable, which corresponds to τc = 6.9 days. However, as a
more conservative estimate, we use τc = 15 days from Italy’s data (Fig. 3), which
exhibited a particularly slow decline in cases compared with most other European
countries41. (The halving time of the daily number of new cases will equal the
having time of the number of active infections ic(t), which is why τc can be
estimated from this data.)

E½ic0� is the expected “effective” number of people an infected traveler will
infect while visiting region c, taking into account containment efforts. For
instance, if the outbreak is contained such that exponential growth never occurs,
the effective number of people infected by the traveler is zero, even if the
traveler did infect some individuals in region c. We estimate that in the absence
of any mitigating policies (mask-wearing, testing, etc.), E½ic0� � R0 � 3:7; the
degree to which E½i0c � differs from R0 depends on how likely a typical traveler is
to transmit the virus relative to a typical resident, as well as on the effectiveness
of contact tracing and other containment efforts. For regions in which
preemptive measures (e.g. mask-wearing, avoiding large gatherings, etc.) are
taken, we expect that E½ic0� � R0 � 3:7 is a substantial overestimate since there is
a far greater chance that an infected traveler will not spark an uncontained
outbreak (and thus ic0 will be 0). Good testing and contact tracing policies can
also substantially increase the chance that ic0 ¼ 0 (thereby reducing E½ic0�) by
reducing the probability of community transmission. And a rigorous enough
quarantine policy at the border of a region may reduce E½ic0� to nearly zero by
preventing infected travelers from even having a chance to infect individuals in
the region.

The value of pc depends on the frequency of travel out of region c. As previously
noted, there is some choice in how to partition a population into a collection of
regions. In general, the larger the regions, the lower the frequency of per capita
travel out of them but the more homogeneous the application of the social
distancing measures. Since pc is smaller for larger regions and Nc is not strongly
affected by the size of regions, R* will be lower if larger regions are chosen, but at
the cost of the social distancing measures being applied over larger areas for each
new outbreak.

Regions do have to be large enough so that transmission between regions can be
treated as a first-order (linear) perturbation to a system in which most spread
occurs within regions. Thus, how small the regions can be depends on the extent to
which travel between them can be reduced. A region could be as small as, for
example, a neighborhood if the neighborhood was willing to take measures so as to
greatly reduce contact with people outside of it. (We note that the regions within
any given collection can differ in both geographic size and in population from one
another.)

Although pc will depend on the size of region c as well as the travel behavior of
individuals within that region, we still wish to get an estimate of a plausible value
for pc. Considering a collection of regions within the U.S. that are large enough
such that travel between the regions is predominantly by flight yields a per capita
travel rate of 0.004 flights out of a region per person per day. This estimate is
obtained by dividing the 1.01 billion total passengers traveling by plane to, from, or
within the U.S. in 201845 by the 2018 U.S. population and the number of days in
2018, and then also dividing by 2 so that only flights out of and not into a region
are counted. Using this estimate for pc0 assumes that the probability that an infected
individual will travel equals that of the general public. Travelers may on average
have more social contacts than the general public or may become infected because
of their travels, which could mean that infected individuals are more likely to be
traveling than the general public. On the other hand, an individual who has
COVID-19 symptoms or has tested positive for COVID-19 may be less likely to
travel than the general public. It should also be noted that, compared to 2019
numbers, U.S. air travel in April and May of 2020 was down by approximately a

Table 1 Summary of parameters affecting the region-to-region reproductive number.

Param. Description

rc The rate of exponential growth in active infections in region c before control measures are implemented.
τc The time-constant (inverse rate) of exponential decline in active infections after the control measures are implemented.
Tc The time delay between the start of exponential growth and the impelmentation of the control measures.
ic0 A stochastic measure of the initial foothold that the virus gains prior to exponential growth, with ic0 ¼ 0 corresponding to containment.
pc0 The probability rate that an infected individual in region c will travel outside the region before the control measures are imposed.
pc1 The probability rate that an infected individual in region c will travel outside the region after the control measures are imposed.
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factor of 10 (the effects of a 10-fold reduction in travel are shown in Fig. 4) and U.S.
air travel in June was down by approximately a factor of 546.

Data availability
The data analyzed in Fig. 3 can be found in refs. 38,47.
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