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Handling Emergent Resource Use Oscillations

Mark Klein, Richard Metzler, and Yaneer Bar-Yam

Abstract—Distributed computing systems are increasingly
being created as self-organizing collections of many autonomous
(human or software) agents cooperating as peers. Peer-to-peer
coordination introduces, however, unique and potentially serious
challenges. When there is no one “in charge,” dysfunctions can
emerge as the collective effect of locally reasonable decisions.
In this paper, we consider the dysfunction wherein inefficient
resource use oscillations occur due to delayed status information,
and describe novel approaches, based on the selective use of
misinformation, for dealing with this problem. A model of several
servers offering equivalent service to independent clients is pre-
sented and studied numerically and analytically; the spreading
of misinformation about the queue status is found to dampen
oscillations and improve system performance for a wide range of
parameters.

Index Terms—Emergent dysfunctions, resource oscillations,
selective misinformation.

1. INTRODUCTION

USINESS and engineering systems are increasingly being

created as self-organizing collections of autonomous and
self-interested (human or software) agents cooperating as peers.
The reasons are simple: the challenges we now face are simply
too large, both in scale and complexity, to be handled by hi-
erarchical control schemes. In many cases, moreover, political
or other concerns exclude the possibility of centralized control
even when technically feasible.

In such systems we face, however, the potential of highly
dysfunctional dynamics emerging as the result of many locally
reasonable agent decisions [1]. Such “emergent dysfunctions”
can take many forms, ranging from inefficient resource alloca-
tion [2], [3] to chaotic inventory and price fluctuations [4]—[7]
to nonconvergent and suboptimal collective decision processes
[8]. The properties of these dysfunctions often appear paradox-
ical, and their solutions often require new kinds of thinking.

In this paper, we focus on one type of emergent dysfunc-
tion: delay-induced resource use oscillation in request-based re-
source sharing. We will sketch out the nature and importance
of this problem, examine how previous approaches have not ad-
dressed the self-interested agent case, and propose several novel
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techniques, based on the selective use of misinformation, that
are suited for this context. The strengths and weaknesses of
these techniques are demonstrated using both empirical (sim-
ulation-based) and analytic techniques.

II. CHALLENGE

Imagine that we have a collection of self-interested consumer
agents faced with a range of competing providers for a given
resource (e.g., a roadway, a piece of information, a sensor or
effector, a communication link, a storage capability, or a web
service). Typically, the utility of a resource is inversely related to
how many consumers are using it. Each agent therefore strives
to select the least-utilized resource. Such resource allocation is
frequently carried out on a first-come first-served basis. This is
a peer-to-peer mechanism—there is no one “in charge”—which
is widely used in settings that include markets, internet routing,
and so on. It is simple to implement, makes minimal band-
width requirements, avoids centralized bottlenecks, and—in
the absence of delays in resource status information—allows
consumers to quickly converge to a near optimal distribution
across resources. This is a kind of self-organization, caused
not by direct consumer-consumer interactions, but rather by
the mutual impacts they have on resource utilization.

Consumers, however, will often have a delayed picture of
how busy each resource is. Agents could imaginably poll every
resource before every request. This would cause, however,
an N-fold increase in number of required messages for [NV
servers, and does not eliminate the delays caused by the travel
time for status messages. In a realistic open-system context
[9], moreover, consumers probably cannot fully rely on re-
source providers to accurately characterize the utility of their
own offerings (in a way that is comparable, moreover, across
providers). Resource providers may be self-interested and thus
reluctant to release accurate utilization information for fear of
compromising their competitive advantage. In that case, agents
will need to estimate resource utilization using other criteria
such as extrapolating from their own previous experience with
those resources, consulting reputation services, or watching
what other consumers are doing. Such estimates often lag
behind the actual resource utilization.

It can be shown analytically (see Section A of the Appendix)
that when status delays occur, the resource queue lengths will
oscillate, potentially reducing the utility achieved by the con-
sumer agents far below optimum. This is also a kind of self-or-
ganization but, as we shall see, one with unfortunate effects.
Imagine that we have two resources: R1 and R2. At some point,
one of the resources, say R1, is utilized less than the other. Con-
sumers at that point will of course tend to select 1. However,
since their image of resource utilization is delayed, they will
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Fig. 1. Utilization of two equivalent resources with and without status info

delays (simulation results; see Section IV for details).

continue to select R1 even after it is no longer the less utilized
resource, leading to an “overshoot” in R1’s utilization. When
the agents finally realize that R2 is now the better choice, they
will tend to select R2 with the same delay-induced overshoot.
The net result is that the utilization of R1 and R2 will oscil-
late around the optimal equilibrium value. The amplitude of the
oscillations, increases with the delay, to the extent that all con-
sumers may at times select one resource when the other is idle
(Fig. 1).

Such oscillations have several undesirable effects. One is that
they can reduce system throughput (and thus increase how long
consumers have to wait for resources) because some resources
may lay idle even when there are consumers not being served.
Oscillations can increase the variability in how long consumers
have to wait for a resource, which may be significant in domains
where consistency, and thus predictability, is valued. Oscilla-
tions, finally, increase the maximum queue size needed by re-
sources to avoid needless request rejections, which is an issue if
queues, as is often the case, invoke some kind of cost.

This problem is influenced in seemingly paradoxical ways by
changing the number of resources and consumers. Fig. 2 shows
the decline in throughput for a system with five resources as
a function of status delay and number of consumers. We see
that reducing resource utilization actually worsens the decline
in throughput, and causes throughput losses to occur at lower
status delay values. The throughput reduction can be substantial,
reaching as high as 40%.

Fig. 3 shows the decline in throughput for systems with dif-
fering numbers of resources, where the number of consumers
per resource is fixed. We find that the throughput losses increase
and come at shorter status delays as we increase the number
of resources. The traditional “fix-all” of increasing system ca-
pacity thus actually makes this emergent dysfunction worse.
Despite their apparently counter-intuitive nature, these results
can be explained simply. When the utilization of a resource is
low, even small amplitude oscillations can cause it to go idle.
When all consumers shift to what they believe is the least-uti-
lized resource, many resources can potentially go idle as a result
of delay-induced oscillations.
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Fig. 2. Decline in throughput as a function of number of consumers for five
resources (simulation results).
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TABLE 1
DECLINE IN THROUGHPUT AS A FUNCTION OF VARIABILITY IN STATUS DELAY
[FOR FIVE RESOURCES AND 50 CLIENTS (SIMULATION RESULTS)]

status delay throughput loss
1000 +/- 0 39%
1000 +/- 500 29%
1000 +/- 1000 24%

It should also be noted that the detrimental impact of status
information delays are remarkably robust in the face of vari-
ations in the size of these delays. This is illustrated in Table I,
which shows the throughput loss, relative to the zero delay case,
for five resources and ten consumers, when the status delay for
each consumer is selected randomly from a normal distribu-
tion with the given mean and standard deviation. Even when
the variability in status delays is quite high, throughput loss is
substantial.

A final point is that we have considered only linear effects
in assessing the impact of resource use oscillations. We have
assumed that the time it takes before a request is handled is a
linear function of the load on a resource. However, response
times often increase more than linearly with load. Imagine, for
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example, that the resource is a web server. The more requests
it is handling, the more likely the server is to experience vir-
tual memory page faults that invoke additional page swapping
overhead. Such nonlinear effects increase the negative impact
of resource oscillations beyond what we have described above.

III. PREVIOUS WORK

Resource use oscillations have been examined in the litera-
ture on “minority games” [14]-[16]. In the minority game, a
large number of players decide each turn to take one of two
alternative resources, and the players in the minority are re-
warded. This work has investigated how to design agents so that
they maximize the reward they receive. In the original formula-
tion, each player is equipped with two strategies that prescribe
an action based on the recent past, and uses the more successful
of the two [17], [18]. Another version of the game has players
repeating their previous action if they win, and switching
with a given probability if they lose [19]. In one evolutionary
variant of the model, players have an innate preference for one
of the actions, and change their preference if their win/loss
balance drops below a certain threshold [20]-[22]. Another
evolutionary variant utilizes an ecology of agents that each
look at resource status information with some characteristic
additional delay. Those agents whose total status delay matches
the resource use oscillation period will, in theory, do a superior
job of estimating current utilization and will come to dominate
the population [23]. Evolutionary approaches are best suited
for contexts where the delay in status information changes
slowly or not at all. If the status delay changes more quickly
than the agent population can evolve, the population will tend
to be dominated by agents with inappropriate strategies. While
previous work has proven effective at ameliorating resource use
oscillations under some conditions, it is not however suited for
open systems contexts because it assumes that we can control
the design or operation of the consumer agents.

Related literature has also emerged from work on queuing
and control theory. Much of this work has focused on devel-
oping active queue management schemes that avoid congestion
in network routers [24], [25], [41], but this addresses oscilla-
tions in the utilization of a single resource (i.e., a router), rather
than the case considered here, which is usage oscillations across
multiple resources. Some efforts, however, have addressed the
multiple resource case, e.g., [26]-[30], but they have assumed
closed systems with cooperative, rather than self-interested, re-
source consumers and providers. Network clients, for example,
are assumed to respond cooperatively to the “dropped packet”
messages they receive from routers by reducing their data send
rate.

There has been a large body of work, finally, on using central-
ized mechanisms for load balancing in parallel and distributed
computing systems, e.g., [31], [32]. This work is also aimed at
closed systems, since centralized scheduling mechanisms are
not suited to open peer-to-peer contexts.

IV. OUR APPROACH: EFFICIENCY THROUGH MISINFORMATION

As we have seen, emergent dysfunctions often have coun-
terintuitive properties. The solutions for emergent dysfunctions
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can, similarly, grow out of behavior that seems locally subop-
timal. This is the case with the techniques we have investigated.
Our approach is predicated on resources (selectively) misin-
forming consumers about how busy they are. Paradoxically, this
can lead, as we show below, to superior resource allocation per-
formance, including greater throughput and reduced variability.

A. Assumptions

We assume, first of all, that there are multiple resource
consumers and providers, and that they are self-interested.
This means that these entities attempt to maximize their utility
without regards to the impact their decisions have on the utility
of other entities in the system. Resources allocate themselves
by responding to consumer requests, as opposed to by using
some kind of centrally controlled allocation mechanism. We
also assume that the resource consumers have no direct infor-
mation about what other consumers are doing or plan to do
in terms of resource requests. Consumers only have access
to estimated task completion times for the relevant resources.
Finally, we assume that this status information can be delayed
by an amount that is relatively large compared to the time a
resource needs to complete a task.

These represent, we believe, realistic assumptions for at least
some important domains. Human and computing systems of all
types are increasingly open systems, which means that the com-
ponent entities may come from diverse sources and cannot be
expected to adhere in their design and behavior to any central-
ized authority. They can be assumed, instead, to be developed
to pursue the interests of their owners/developers. Large-scale
resource allocation, in such contexts as business markets, grid
computing, and Internet bandwidth allocation, is request based
because the needs of resource consumers are not knowable in
advance by resource providers. Resource consumers, for the
same reason, must operate largely in ignorance of which re-
sources their peers may be interested in. Resource consumers, at
least in the Internet environment, generally can access resources
throughout the world. Finally, delayed status information is in-
evitable in a world where the time needed to perform computing
tasks is decreasing exponentially according to Moore’s law, but
message transmission times cannot drop below the limit im-
posed by the speed of light. As anyone can verify using “ping,”
round-trip message times on the Internet can range from 15 to
500 ms or even more [33], while many computing tasks (such
as serving static web pages) make take a server fractions of a
millisecond to perform. Cross-resource usage oscillations thus
appear inevitable and have indeed been observed in a variety of
contexts [10]-[13], [34], [35].

B. Scenario

All of the solution approaches proposed herein were evalu-
ated using a specially written discrete event simulator running
under Macintosh Lisp 5.0 on a 733-MHz PowerMac G4.
The simulation scenario considered multiple (from 20-50)
consumers and multiple (2-5) resources. Consumers submit
requests to the resource that they judge is the least heavily
utilized. Resources can differ in how quickly they can complete
requests. When a request is received by a resource, it is placed
on a queue and, once it reaches the front of the queue, the
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resource is allocated to the consumer for a length of time
inversely proportional to the speed of the resource. When that
period is over, a notification message is sent to the consumer.
Messages take a fixed amount of time to travel from sender to
receiver. Consumers wait a randomly selected amount of time,
after a notification is received, before submitting a new request.
The value of the service provided by a resource (though not
the time it takes to access the resource) is independent of the
resource’s utilization. The case where utilization does affect
resource value is considered in [36]. The two metrics of in-
terest to consumers in this scenario include 1) the aggregate
throughput of the system, in terms of requests processed per
time unit and 2) the variability in request processing times.
In our simulations, messages took 20 time units to propagate,
the time gap between receiving a completion notification and
sending a subsequent request was normally distributed with an
average of 40 and a standard deviation of 10, one server took
80 time units to service a request, and the other took 160 time
units. Each simulation run was 10 000 time units long.

All of the experimental (i.e., simulation-based) conclusions
reported in this paper were confirmed by performing a T test on
the results of 100 simulator runs per condition. These conclu-
sions were all statistically significant at p < 0.01.

C. Status Misinformation

Let us assume that the resources have control over the status
information that the consumers are given when they decide
which resource to request (this is a rather strong assumption,
of course, which will be relaxed later). The resources use this
control to lead consumers to select the “wrong” (more heavily
utilized) resource with probability p. The notion that agents can
have somewhat “corrupted” status information was broached in
[23], but that work did not investigate how status misinforma-
tion can be beneficial by dampening delay-induced oscillations.
Oscillations are damped because misinformation-caused re-
quests are spread to some extent to both resources, regardless
of which one is actually less utilized. In Fig. 4, for example,
we can see how the oscillations in resource queue lengths were
substantially reduced when resource status misinformation
(p = 0.25) was introduced at time = 10 000.

If the status misinformation probability is made large enough,
however, consumers get less and less “real” information and
begin to choose resources without regards to their actual
utilization. Resource utilization then increasingly performs a
“random walk” [37], once again increasing the variability in
queue lengths. There is thus a tradeoff involved (Fig. 5).

These changes in queue length variance can be expected to
have a direct impact on the variability of request processing
times, and also raise the possibility that the queue for one
of the resources will empty out, thereby reducing throughput.
This is confirmed by simulations [see Fig. 6(a) and (b)]. When
p = 0, we find that the variability in how long a consumer must
wait for a resource increases, as we would expect, with the
status information delay, due to periodic oscillations. When the
delays get large enough to cause queue emptying, throughput
drops. For intermediate values of p, throughput is returned to
near-optimal levels even with large delays, but variability is high.
As p approaches 1/2, throughput drops off again (due to queue
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variability. The y axis shows the root mean square (Arms) of the difference in
queue lengths, divided by the A, value for p = 0 (simulation results).

emptying caused by random walk fluctuations) and variability
becomes higher yet. In our example system, throughput is
maximized when p is about 0.35; remarkably, performance is
improved by imposing substantial misinformation.

This approach faces some serious disadvantages, however,
when applied in an open systems context. We either must control
the status information that consumers use to select resources, or
else the consumers themselves must impose a stochastic ele-
ment upon their resource selection decisions. Both assumptions
are problematic. There is no guarantee that consumers will rely
on an external, and thus potentially manipulable, information
source to estimate resource availability. They may, for example,
rely solely on their own recent experience with the different re-
sources. It may also be unrealistic to expect consumers to add
stochastic “noise” to their resource selection decisions. While
adding noise is an effective strategy when delay-induced oscil-
lations are occurring, it is against a consumer’s interest to use
stochastic noise when substantial delay-induced oscillations are
not present, as this will only lead the consumers to select re-
sources that offer slower task completion times. This insight
is confirmed by simulations where consumers that either do or
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throughput

Fig. 6(a). Throughput as a function of delay and misinformation probability
(simulation results). (b) Completion time variability as a function of delay and
misinformation probability (simulation results).

TABLE II(A)
PAYOFF MATRICES SHOWING TASK COMPLETIONS PER CONSUMER
IN THE delay = 1000 CONDITION

no noise noise
no noise 23/23 26/26
noise 26/26 28/28

TABLE II(B)

PAYOFF MATRICES SHOWING TASK COMPLETIONS PER CONSUMER IN THE
DELAY = 0 CONDITION. DIAGONALS SHOW THE CASE WHERE HALF THE
CONSUMERS USE NOISE, AND THE OTHER HALF DO NOT. SIMULATION
RESULTS FOR TEN CONSUMERS AND FIVE RESOURCES

no noise noise
no noise 38/38 21/17
noise 1721 33/33

do not use noise compete against each other to get resources
(Table II).

When significant status delays are present, consumers that
use noise enjoy a higher task-completion rate. When status
delays are not present, however, the consumers that use noise
fare worse than the consumers that do not. This introduces a
dilemma, because in an open system consumers are unlikely to
be able to determine if delay-induced oscillations are occurring
or not. This requires either knowing the status delays for the
other consumers, or (as we shall see below) having detailed

utilization information for all the competing resources. Both
alternatives are excluded by the open system assumptions we
delineated earlier in the paper.

D. Stochastic Request Rejection

These concerns motivated us to explore an alternative ap-
proach for alleviating delay-induced resource use oscillations.
The idea is simple: some fixed fraction of resource requests are
rejected, at random, by resources. When a consumer receives a
rejection message, it is (reasonably) assumed to send its request
to some other server instead. It is in the consumer’s interest to
do so because, as far as a consumer knows, the reject implies
that the resource is busy, and thus that some other resource
is likely to be less loaded. The net effect of such stochastic
rejection is the same as with the previous approach in that,
for some constant fraction of requests, consumers are misled
about which resource is the least utilized. In the scenario we
studied, throughput was maximized when 1/2 of all requests
were stochastically rejected.

The stochastic request rejection approach can, however, re-
duce throughput if resource demands are low enough that the
resource queues are forced to empty out due a request rejection.
Italso increases message traffic due to the addition of reject mes-
sages. When the rejection probability is 0.5, the average number
of rejections for a request is 1, so an average of two requests will
be needed to access a resource, increasing total required mes-
sage traffic from 2 (one request and one notification) to 4 (two
requests, one reject, and one notification). (See Appendix Part
C for an analytic treatment).

E. Load-Dependent Rejection

Both of these disadvantages can be substantially ameliorated
by adopting a load-dependent rejection scheme, inspired by the
“random early drop” technique proposed for avoiding send-rate
synchronization among the clients sharing a single network
router [38]. Instead of using a fixed request rejection frequency,
resources reject requests with a frequency proportional to how
full their queue is. The number of rejection messages generated
is less (because high rejection rates are only incurred at the
utilization peaks) and very few rejections occur when the
resources are underutilized, making it unlikely that throughput
will be reduced because a request was rejected when a re-
source was available. Load-dependent rejection also offers the
bonus of somewhat higher throughout than fixed-rate rejection
because the rejection rate (and thus the degree of damping)
increases with the amplitude, the oscillations have a rounded
shape that results in a smaller peak amplitude.

The average rate of rejection needs to be tuned to the current
average load. There is a tradeoff involved. If the rejection regime
is too aggressive, we incur excessive reject message traffic, and
the possibility of causing queue emptying by rejecting requests
when a resource is lightly utilized. If the rejection regime is not
aggressive enough, however, there will be insufficient damping,
which can also led to queue emptying and throughput loss. The
following figure shows a typical tradeoff (Fig. 7).

Each point on the curve represents a different level of load-de-
pendent rejection: a relatively mild rejection regime (i.e., where
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Fig. 7. Throughput (completes) versus reject messages for different levels of
load-dependent rejection: simulation results for five resources, 50 consumers,
and status delay 1000.

the rejection rate increases slowly with load) on the left, and in-
creasingly aggressive rejection to the right. As we can see, there
is an optimum rejection “strength,” beyond which throughout
begins to decrease.

The impact of the schemes we have discussed can be summa-
rized and contrasted as follows [Fig. 8(a)—(c)].

Misinformation-based techniques substantially increase
throughput and reduce the variability in the time it takes to
get a consumer request satisfied, for a wide range of delays,
relative to the base case where these techniques were not
used. Load-based rejection is the best technique in terms of
throughput and variability, with the additional advantage of not
assuming we can control the status information received by
consumer agents, but incurs increased message traffic.

One final refinement involves the realization that there is no
point in incurring the increased message traffic caused by re-
quest rejection if there are no resource use oscillations, or if the
oscillations are caused by variations in aggregate consumer de-
mand rather than by status delays. This challenge, fortunately, is
easy to address. Stochastic request rejection should only be acti-
vated if (1) there are significant periodic oscillations in resource
utilization (determined by looking for above-threshold values
in the power spectrum derived by a fast Fourier transform), and
(2) the resource utilization across servers is negatively corre-
lated (positive correlation would imply that aggregate demand
is varying). We have implemented this approach and found that
it successfully avoids being triggered by aggregate demand vari-
ations while remaining effective in responding to delay-induced
oscillations.

Are self-interested resources likely to implement a load-de-
pendent rejection (LDR) scheme? The incentives are mixed. We
can expect that most resources are motivated by two concerns:
1) increasing the number of requests they service (e.g., because
they make a profit for each task completion) and 2) reducing
maximum queue sizes (because long queues typically invoke
some kind of storage cost). As we have seen, LDR does reduce
maximum queue sizes, and increases overall throughput. Our
simulations show that the more resources implement LDR, the
higher the overall throughput will be. When only a subset of the
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Simulation results for two resources and 20 consumers. (b) Variability for
different oscillation remediation schemes. Simulation results for two resources
and 20 consumers. (c) Message traffic for different oscillation remediation
schemes. Simulation results for two resources and 20 consumers.

resources implement LDR, however, the resources that do use
it fare worse (in terms of tasks completed) than the resources
that do not. This is because the non-LDR resources do not “co-
operate” by redistributing some of the requests they receive to
other resources with lower utilizations. This is thus a kind of
prisoner’s dilemma: all benefit if all use LDR, but individual re-
sources are incented to “defect” and abandon LDR. However,
if all defect, then all lose. One can imagine several solutions to
this problem. One is to impose penalties on resources that do not
use LDR. Another is for resources to implement a “tit-for-tat”
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scheme, wherein resources begin using LDR, but abandon it if
the others do. It has been shown that tit-for-tat strategies incent
individuals to cooperate in prisoner’s dilemma contexts [39]. A
final possibility is to wrap resources in “sentinels” that mon-
itor and modify the requests and responses passing in and out of
these resources, sending “reject” messages to consumers when
the resources they monitor have large queues [40].

V. CONTRIBUTIONS AND FUTURE WORK

We have presented a novel and promising approach for
mitigating the deleterious effects of delay-induced resource-use
oscillations on request-based resource sharing, by exploiting
the paradoxical power of selectively (and stochastically) mis-
informing consumers. While stochastic approaches have been
applied to such challenges as nonlinear optimization [43],
[44], this is the first instance we are aware of where stochastic
misinformation has been applied to resource use oscillations.

Our approach is designed to be appropriate for the important
context of open distributed systems, where we can not rely on
being able to control the design or operation of the resources
or consumers. Our work therefore addresses an important gap
in the literature, since previous efforts have focused almost ex-
clusively on closed-system solutions that involve centralized
scheduling, cooperative resources and consumers, or both.

Our future efforts will include empirical and analytic compo-
nents. We will extend our analytic work to address more than
two resources as well as asymmetric resources. Our simulations
to date have shown that load-dependent rejection is effective at
ameliorating status delay-induced oscillations in this context,
but this needs to be backed up with an analytic treatment. We
are attempting to derive an analytic way of determining the cor-
rect rejection regime for different contexts; we have done this
empirically to date. We also plan to use our models to predict
the degree of resource oscillation, as well as the potential ben-
efits of selective misinformation, for real-world resources such
as competing web sites.

APPENDIX
ANALYTIC TREATMENT

‘We have been able to formally verify many of the conclusions
described above. Our analysis results to date are restricted to the
case of two servers 1 and R, which offer the same service to a
number N of clients (note that the simulations described above
also consider cases where there are more than two resources).
While previous work has derived the delay-differential equa-
tions that underlie resource use oscillation (see, for example, [4]
and [23]), we are unaware of any successful previous efforts to
formally model resource sharing dynamics with stochastic mis-
information and request rejection.

In our analytic treatment, clients send data packets to one
of the servers. After a travel time 77, the packets arrive at the
server, and are added to a queue. Servers need a time 7p to
process each request. We chose the time scale such that 7p = 1
(i.e., all times are given in units of 7p, and processing rates
in units of requests/ processing time). When a client’s request
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is completed, the server sends a “done” message (which takes
another 7r to arrive) to the client. The client is then idle for a
time 77, after which it sends a new packet. Clients send their
request to the server reputed to have the shorter queue length;
however, the information they receive is obsolete—they only
know the length of the queues a delay time 7 ago.

A. Dynamics Without Disinformation

We first study the simple case where both servers accept all
incoming requests and demand is distributed uniformly enough,
such that both servers are busy at all times. The only relevant
variables are Ny (t) and N»(t), the number of clients whose data
is in the queue or being processed by R; and Ro, respectively,
at time ¢; we treat them as continuous variables. Idle clients do
not have to be taken into account explicitly; neither do clients
who are waiting for their “done” message from the server—for
our purposes, they are the same as idle agents, and we simply do
not count them in the number IV of active clients. We will first
solve the problem neglecting agents whose message is traveling
to the server, then include nonvanishing travel times.

There are only two processes which change the length of the
queues. 1) Due to processed requests, both Ny and N> decrease
by 1 per time unit. 2) In the same time span, two clients (whose
data was processed by 1 and R a time 7 + 77 ago) compare
the obsolete values Ny(¢t — 7p) and N»o(t — 7p) and add their
requests to the queue according to this information.

We write delay-differential equations for N1 and N»

AN

d—tl =20 (Na(t — 7p) — Ni(t — 7)) — 1

dN:

d_tz =20(Ny(t — 7p) — No(t — 7p)) — 1 (D

where © stands for the step function, ©(z) = 0 for < 0, and
©(z) = 1 for z > 0. This can be simplified by introducing the
difference in queue lengths A(t) = Ny(t) — Na(t)

dA

— = —2sign(A(t — p)). )
dt

The stationary solution (i.e., the oscillation that will result after
a transient period) for this equation is

A(t) = 27ptri <L + </>> 3)

4T D
where tri(z) is the triangle function

4 — 1,

N forO0 <z <1/2
t“(z)_{ —4(x —1/2) + 1,

for1/2 <z < 1, periodic in 1
“)

and ¢ is a phase determined by initial conditions. The frequency
of the resulting oscillation is only determined by the delay, and
the amplitude by the ratio of delay time to processing time—the
total number of clients does not play a role. Clients typically
spend much of their time with their request in the queue, and
adding more clients only makes both queues longer. Also, if the
delay goes to zero, so does the amplitude of oscillations.
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Fig.9. llustration of A(t) in the regime where servers empty out periodically.
When A reaches +N or — N, throughput drops from 2 to 1.

Introducing a nonvanishing travel time 7 in this simple case
has the same effect on A (¢) as increasing the delay time: it leads
to the delay-differential equation

%(t + 7r) = —2sign(A(t — 7p)). 5)
The solution is given by (3) with 7p replaced by 7p + 7.

1) The Impact of Idle Servers: The case where oscillations
become so strong that servers go idle periodically (2rp > N)
can be treated in a similar framework, for 7 = 0: Once the
difference in queue lengths reaches the value +/N or —N, one
queue ceases to process requests. Hence, the rate of requests at
the other server drops from 2 to 1—exactly the rate at which
it keeps processing them. The queue length at the active server
therefore stays constant for some time 71,. An example of the
resulting curve can be seen in Fig. 9. Starting from the time
where A(t) crosses the zero line, it will take a time 7, for clients
to realize that they are using the “wrong” server, so 7p = 77, +
N/2,0r 71, = Tp— N/2. The period T of the oscillations is then
T = 2711, + 2N = 27p + N, which is smaller than 47p. Data
throughput of the system drops from 2 to (3 + 27p/N)/(1 +
27p/N) (in units of 7p).

B. Impact of Global Disinformation

1) Idealized Case: No Fluctuations: We now introduce
global disinformation: Clients have probability p of receiving
the wrong answer, and accordingly choose the “wrong” server.
The update equations are

% =2[(1-p)O(— A(t—7p)) + pO(A(t —7p))] — 1
% =2[(1-p)O(A(t —71p)) +pO( — A(t —1p))] - 1
(6)

leading to
% = —2(1 - 2p)sign(A(t — 7p)). (7

This equation has the form of (3) with a prefactor of 1-2 p, and
has a steady-state solution

A(t) = 2rp(1 — 2p) i <L + ¢) @®)
4TD

forp < 1/2. At p = 1/2, no information is available: clients’
decisions are random, and queue lengths perform a random
walk, whose fluctuations are not captured by the deterministic
framework we are using. Even for values p < 1/2, fluctuations
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Fig. 10. Global disinformation: The y axis shows the root mean square
(RMS) of the difference in queue lengths, divided by the RMS one gets without
disinformation. The theory for negligible fluctuations (solid line) is given by
(8); agreement with it improves as the amplitude of oscillations increases. The
effect of fluctuations can be modeled using a discrete random walk (dashed
lines).

may become larger than the typical amplitude of oscillations,
and thus dominate the dynamics. For p > 1/2, users migrate
systematically from the less busy to the busier server, until one
is idle much of the time, and the other has almost all clients in
its queue.

2) Effects and Treatment of Fluctuations: The tradeoff be-
tween reduced oscillations and increased fluctuations can be
seen in Fig. 10. Rather than measuring the amplitude of oscilla-
tions, the root mean square A,,s = (A2)'/2 of A(t) is shown.
For a pure triangle function of amplitude a, one gets A,,s =
a/+/3. For small p, the amplitude is reduced linearly; for larger
p, fluctuations increase, dominating the dampened oscillations.
When the amplitude of the undisturbed system is small, fluctu-
ations have a large impact. As the amplitude of oscillations gets
larger, the impact of fluctuations becomes smaller, and the value
of p where fluctuations dominate moves closer to 1/2.

Under the influence of randomness, A performs a biased
random walk. Let us assume that server R is currently pre-
ferred. In each unit of time, A/4 increases by 1 with probability
p? (the two clients processed both go to R;), stays constant
with probability p(1 — p), and decreases by 1 with probability
(1 — p)? (both clients move from R; to Ry). To reproduce
quantitatively the effects of fluctuations, one can numerically
average A2 over such a random walk that takes place in two
phases: the first phase lasts until A = 0 is reached; the second
takes another 7p steps until the direction of the bias is re-
versed. The probability distribution of A at the beginning of
the half-period has to be chosen self-consistently such that it
is a mirror-image of the probability distribution at the end; the
proper choice for A/4 is a Gaussian restricted to positive values
with mean (1-2p)7p and variance 2p(1 — p)7p.

These analytic results are, as Fig. 10 shows, in excellent
agreement with our simulation results.

C. Request Rejection

Assuming that servers cannot influence the public informa-
tion on queue status, they can still influence the behavior of
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clients directly: they claim they are not capable of processing
a request, and reject it—in the simplest case, with a constant
probability 7. Compared to global disinformation, a new possi-
bility arises that a request bounces back and forth several times
between the servers, but that adds nothing new in principle: the
fraction of requests that end up at the server that they tried at first
is(1—7)+7r2(1—7r)+r*(1—7)+---=1/(r+1), whereas a
fraction r/(r + 1) will be processed at the other server. This is
equivalent to setting p = /(1 + r) in the “global disinforma-
tion” scheme [see (8)], and gives equivalent results.

Choosing 7 close enough to 1 reduces the amplitude of oscil-
lations dramatically; however, each message is rejected a large
number of times on average, generating large amounts of extra
traffic.

D. Load-Dependent Request Rejection

As a more general case of individual rejection, servers can
have rejection probabilities that depend on their current queue
length. For example, let us consider the case where r; = cN;
if ¢N; < 1, and 1 otherwise, with some appropriately chosen
constant c.

The analysis from the “individual rejection” section can be
repeated with the additional slight complication of two different
rejection rates 4 and 5. A fraction (1—r1)/(1—r1r9) of agents
who initially try server R ends up being accepted by it, whereas
a fraction 71 (1 — 72)/(1 — r172) eventually winds up at server
Ry, and vice versa for clients who attempted 2 first. Combining
the resulting delay-differential equations for N7 and N5 into one
for A, one obtains

dA 2

= = m(@(—A(t —7p))(1 = 2ry +7172)

— @(A(t — TD))(l — 279 + 7"17'2)). 9)

We can now substitute the load-dependent rates. We write them
as follows: 71 = Tavg + A, 79 = Tavg — A, With 745 =
(r1 + r2)/2 and ¢’ = ¢/2. For small amplitudes A relative to
the total number of players IV, the deviation from 7, does not
play a significant role, and it is r,,, that determines behavior,
yielding the same results as a constant rejection rate. For larger
relative amplitudes, the oscillations are no longer pure triangle
waves, but have a more curved tip, effectively reducing the max-
imum values that A takes. These nonlinear effects make LDR
more efficient at avoiding queue emptying. They also provide a
restoring force that suppresses fluctuations effectively. Further
details are available in [41].
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