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Genome Wide Dynamics and Control: Archetypes for Collective Behavior

Differences in perspectives about regulatory structures are also related to differences in

concept and representation of dynamical processes. Describing individual gene effects begins

with identifying individual genes, mechanisms of gene interactions, and pathways of gene

products. Describing attractors involves characterizing the convergence of transcriptome

wide cell states where majorities of genes determine behavior rather than any one. The

difference between low dimensional (few variable) and high dimensional (many variable)

collective dynamics is central. Characterizing cellular regulatory networks more generally

as distributed control systems where individual genes can exert strong influence requires

bridging these two views.

We describe a framework in which individual genes and collective states can be considered

together to evaluate their mutual influence. The difficulty we overcome is the contrast in

the quantities needed to describe the two different pictures. What is needed are analogs

of control coefficients, which have been used to study the impact of individual catalysts on

system metabolic flows (S1 ).

Identifying such coefficients requires a measure of differences of collective states. While

Pearsons correlation might be used (S2 ), in order to define a fundamentally justifiable

measure we identify an archetype, e.g. a representation of a particular cell type, using

expression values of all genes {eα
i }, where i is the gene index, and α is a cell type label.

These values may be taken as a representative member, or a mean over a population of cells

of the same type. When a cell has that type, individual expression values may deviate from

the archetype values. However, when considered over all genes, the deviations are bounded.

We measure the deviation of a gene expression value ei relative to an archetype, normal-

ized by the expected deviation over a reference population of cells,

dα
i = (log(ei)− log(eα

i )) /σi. (1)

We use logarithms of expression values to obtain better-behaved distributions. The nor-

malization σi is chosen to establish a common range of values for dα
i and can be set to the

standard deviation over the reference cell population of log(ei), i.e. a population of cells

that are of a particular phenotype (σi may have additional labels to identify the reference
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population). If the population is not large we can approximate σi = σ by considering all

genes together in taking the standard deviation, or combining multiple phenotype popula-

tions. The proximity of an arbitrary state to the archetype, the conformity or conformance,

is given by

mα =
1

N

∑

i

f(dα
i ), (2)

where f is a function that is 1 for values close to zero, i.e. when a gene expression level is

proximate to the archetypical value, and goes to zero as it deviates therefrom. N is the

number of genes. The purpose of this function is to prevent individual gene deviations from

determining the distance, which should instead depend on whether or not many expression

levels are close to archetypical values. We use

mα =
1

N

∑

i

(
1− tanh((dα

i )2)
)
. (3)

Control coefficients are specified by the rate of change of the collective displacement

m̂α = (1 −mα) with respect to the control parameter, measured logarithmically—i.e. the

exponent of a power law relationship. Thus we define control or sensitivity coefficients as

ci =
ei

m̂α

dm̂α

ei
=

d log(m̂α)

d log(ei)
. (4)

As an example, we evaluated this for Sca-1 in the data of Chang et al. (S2 ), after

performing a number of tests (see Supplementary Figure 2), and found a control coefficient

of 0.52, consistent with the coupling found between this gene and collective behavior in

that paper. This is obtained despite the cells having a high concentration of Sca-1 protein

on the cell surface having lower mRNA expression compared to cells with intermediate

protein concentrations, presumably due to feedback. We also obtained many other control

coefficients from the same data, including 2.20 for Sfpi1, and -.59 for Gata1, lineage-specific

transcription factors involved in stem-cell differentiation. Given the nature of the data, this

indicates correlation relative to the chosen states and not causation, and the latter can also

be characterized by relevant experiments.
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Supplementary Figure 1

Principal component analysis reveals transcriptome attractors across tissue
types. A) The transcriptional profiles of 79 human tissue and tumor cell types (S3 ) fall
into several clusters when they are plotted in the two dimensions that draw the greatest
distinctions among tissue types when considering the 80 genes with most varying expression
levels. The dimensions of maximum variation are obtained by principal component analysis
(S4 ). Tissues are color coded by category. B) As in A for analyses done with the n most
varying genes as indicated. The tissue type clusters approach their final conformation when
hundreds of genes are considered.
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Supplementary Figure 2

0.02

Collective dynamics of cell types. Dots represent high dimensional cell states from
Chang et al. (S2 ), with two replicates each of cultures distinguished by low (red), mid
(purple) and high (blue) concentrations of the surface marker Sca-1, and subsequent conver-
gence of these cultures after 6-days. An optimized two-dimensional embedding of distances
given by m̂α (see supporting online text) is shown, with scale bar in units of m̂α. Control
coefficients can be calculated as the ratio of the log(m̂α) (grey arrows) change to the log of
individual gene expression value change using as reference the Sca-1 low 0 day state.
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