
The solution is a moving Gaussian:

(1.4.61)

Since the description of diffusive motion always allows the system to stay where it is,
there is a limit to the degree of bias that can occur in the random walk. For this limit
set R− = 0. Then D = av/2 and the spreading of the probability is given by = √avt.
This shows that unlike the biased random walk in Section 1.2, diffusive motion on a
washboard with a given spacing a cannot describe ballistic or deterministic motion in
a single direction.

Cellular Automata

The first four sections of this chapter were dedicated to systems in which the existence
of many parameters (degrees of freedom) describing the system is hidden in one way
or another. In this section we begin to describe systems where many degrees of free-
dom are explicitly represented. Cellular automata (CA) form a general class of mod-
els of dynamical systems which are appealingly simple and yet capture a rich variety
of behavior. This has made them a favorite tool for studying the generic behavior of
and modeling complex dynamical systems. Historically CA are also intimately related
to the development of concepts of computers and computation. This connection con-
tinues to be a theme often found in discussions of CA. Moreover, despite the wide dif-
ferences between CA and conventional computer architectures,CA are convenient for
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Figure 1.4.5 The biased random walk is also found in a multiple-well system when the illus-
trated washboard potential is used. The velocity of the system is given by the difference in
hopping rates to the right and to the left. ❚
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computer simulations in general and parallel computer simulations in particular.
Thus CA have gained importance with the increasing use of simulations in the devel-
opment of our understanding of complex systems and their behavior.

1.5.1 Deterministic cellular automata
The concept of cellular automata begins from the concept of space and the locality of
influence. We assume that the system we would like to represent is distributed in
space,and that nearby regions of space have more to do with each other than regions
far apart. The idea that regions nearby have greater influence upon each other is of-
ten associated with a limit (such as the speed of light) to how fast information about
what is happening in one place can move to another place.*

Once we have a system spread out in space, we mark off the space into cells. We
then use a set of variables to describe what is happening at a given instant of time in
a particular cell.

s(i, j, k ;t) = s(xi, yj, zk;t) (1.5.1)

where i, j, k are integers (i, j, k ∈Z),and this notation is for a three-dimensional space
(3-d). We can also describe automata in one or two dimensions (1-d or 2-d) or higher
than three dimensions. The time dependence of the cell variables is given by an iter-
ative rule:

s(i, j, k;t) = R({s(i ′ − i, j ′ − j, k ′ − k ;t − 1)} i ′, j ′, k ′ ∈ Z) (1.5.2)

where the rule R is shown as a function of the values of all the variables at the previ-
ous time,at positions relative to that of the cell s(i, j, k ;t − 1). The rule is assumed to
be the same everywhere in the space—there is no space index on the rule. Differences
between what is happening at different locations in the space are due only to the val-
ues of the variables, not the update rule. The rule is also homogeneous in time; i.e.,
the rule is the same at different times.

The locality of the rule shows up in the form of the rule. It is assumed to give the
value of a particular cell variable at the next time only in terms of the values of cells
in the vicinity of the cell at the previous time. The set of these cells is known as its
neighborhood. For example, the rule might depend only on the values of twenty-
seven cells in a cube centered on the location of the cell itself.The indices of these cells
are obtained by independently incrementing or decrementing once, or leaving the
same, each of the indices:

s(i, j, k;t) = R(s(i ± 1,0, j ± 1, 0, k ± 1, 0;t − 1)) (1.5.3)
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*These assumptions are both reasonable and valid for many systems. However, there are systems where
this is not the most natural set of assumptions. For example, when there are widely divergent speeds of
propagation of different quantities (e.g.,light and sound) it may be convenient to represent one as instan-
taneous (light) and the other as propagating (sound). On a fundamental level, Einstein, Podalsky and
Rosen carefully formulated the simple assumptions of local influence and found that quantum mechanics
violates these simple assumptions.A complete understanding of the nature of their paradox has yet to be
reached.
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where the informal notation i ± 1,0 is the set {i − 1,i,i + 1}. In this case there are a to-
tal of twenty-seven cells upon which the update rule R(s) depends. The neighborhood
could be smaller or larger than this example.

CA can be usefully simplified to the point where each cell is a single binary vari-
able. As usual, the binary variable may use the notation {0,1}, {−1,1}, {ON,OFF} or
{↑,↓}. The terminology is often suggested by the system to be described. Two 1-d ex-
amples are given in Question 1.5.1 and Fig. 1.5.1. For these 1-d cases we can show the
time evolution of a CA in a single figure,where the time axis runs vertically down the
page and the horizontal axis is the space axis.Each figure is a CA space-time diagram
that illustrates a particular history.

In these examples, a finite space is used rather than an infinite space. We can de-
fine various boundary conditions at the edges.The most common is to use a periodic
boundary condition where the space wraps around to itself. The one-dimensional ex-
amples can be described as circles.A two-dimensional example would be a torus and
a three-dimensional example would be a generalized torus. Periodic boundary con-
ditions are convenient, because there is no special position in the space. Some care
must be taken in considering the boundary conditions even in this case, because there
are rules where the behavior depends on the size of the space. Another standard kind
of boundary condition arises from setting all of the values of the variables outside the
finite space of interest to a particular value such as 0.

Question 1.5.1 Fill in the evolution of the two rules of Fig. 1.5.1. The
first CA (Fig. 1.5.1(a)) is the majority rule that sets a cell to the majority

of the three cells consisting of itself and its two neighbors in the previous
time. This can be written using s(i ;t) = ±1 as:

s(i ;t + 1) = sign(s(i − 1;t) + s(i ;t) + s(i + 1;t)) (1.5.4)

In the figure {−1, + 1} are represented by {↑, ↓} respectively.
The second CA (Fig. 1.5.1(b)), called the mod2 rule,is obtained by set-

ting the i th cell to be OFF if the number of ON squares in the neighborhood
is e ven, and ON if this number is odd. To write this in a simple form use
s(i;t) = {0, 1}. Then:

s(i ;t + 1) = mod2 (s(i − 1;t) + s(i ; t) + s(i + 1;t)) (1.5.5)

Solution 1.5.1 Notes:

1. The first rule (a) becomes trivial almost immediately, since it achieves a
fixed state after only two updates. Many CA, as well as many physical
systems on a macroscopic scale, behave this way.

2. Be careful about the boundary conditions when updating the rules,par-
ticularly for rule (b).

3. The second rule (b) goes through a sequence of states very different
from each other. Surprisingly, it will recover the initial configuration af-
ter eight updates. ❚
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Figure 1.5.1 Two examples of one dimensional (1-d) cellular automata. The top row in each
case gives the initial conditions. The value of a cell at a particular time is given by a rule that
depends on the values of the cells in its neighborhood at the previous time. For these rules
the neighborhood consists of three cells: the cell itself and the two cells on either side. The
first time step is shown below the initial conditions for (a) the majority rule, where each cell
is equal to the value of the majority of the cells in its neighborhood at the previous time and
(b) the mod2 rule which sums the value of the cells in the neighborhood modulo two to ob-
tain the value of the cell in the next time. The rules are written in Question 1.5.1. The rest
of the time steps are to be filled in as part of this question. ❚
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Question 1.5.2 The evo luti on of the mod2 rule is peri odic in ti m e . Af ter
ei ght update s , the initial state of the sys tem is recovered in Fig. 1 . 5 . 1 ( b ) .

Because the state of the sys tem at a particular time determines uniqu ely the
s t a te at every su cceeding ti m e , this is an 8-cycle that wi ll repeat itsel f . Th ere
a re sixteen cells in the space shown in Fig. 1 . 5 . 1 ( b ) . Is the nu m ber of cells con-
n ected with the length of the cycle? Try a space that has ei ght cells (Fig.1 . 5 . 2 ( a ) ) .

Solution 1.5.2 For a space with eight cells, the maximum length of a cycle
is four. We could also use an initial condition that has a space periodicity of
four in a space with eight cells (Fig. 1.5.2(b)). Then the cycle length would
only be two. From these examples we see that the mod2 rule returns to the
initial value after a time that depends upon the size of the space. More
precisely, it depends on the periodicity of the initial conditions. The time
periodicity (cycle length) for these examples is simply related to the space
periodicity. ❚

Question 1.5.3 Look at the mod2 rule in a space with six cells
(Fig. 1.5.2(c)) and in a space with five cells (Fig. 1.5.2(d)) .What can you

conclude from these trials?

Solution 1.5.3 The mod2 rule can behave quite differently depending on
the periodicity of the space it is in.The examples in Question 1.5.1 and 1.5.2
considered only spaces with a periodicity given by 2k for some k. The new ex-
amples in this question show that the evolution of the rule may lead to a
fixed point much like the majority rule. More than one initial condition
leads to the same fixed point. Both the example shown and the fixed point
itself does. Systematic analyses of the cycles and fixed points (cycles of pe-
riod one) for this and other rules of this type,and various boundary condi-
tions have been performed. ❚

The choice of initial conditions is an important aspect of the operation of many
CA. Computer investigations of CA often begin by assuming a “seed” consisting of a
single cell with the value +1 (a single ON cell) and all the rest −1 (OFF). Alternatively,
the initial conditions may be chosen to be random: s(i, j, k;0) = ±1 with equal proba-
bility. The behavior of the system with a particular initial condition may be assumed
to be generic, or some quantity may be averaged over different choices of initial
conditions.

Like the iterative maps we considered in Section 1.1,the CA dynamics may be de-
scribed in terms of cycles and attractors. As long as we consider only binary variables
and a finite space, the dynamics must repeat itself after no more than a number of
steps equal to the number of possible states of the system. This number grows expo-
nentially with the size of the space. There are 2N states of the system when there are a
total of N cells. For 100 cells the length of the longest possible cycle would be of order
1030. To consider such a long time for a small space may seem an unusual model of
space-time. For most analogies of CA with physical systems,this model of space-time
is not the most appropriate. We might restrict the notion of cycles to apply only when
their length does not grow exponentially with the size of the system.
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Rules can be distinguished from each other and classified according to a variety
of features they may possess. For example, some rules are reversible and others are
not. Any reversible rule takes each state onto a unique successor. Otherwise it would
be impossible to construct a single valued inverse mapping. Even when a rule is
reversible,it is not guaranteed that the inverse rule is itself a CA,since it may not de-
pend only on the local values of the variables. An example is given in question 1.5.5.
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Figure 1.5.2 Four additional examples for the mod2 rule that have different initial condi-
tions with specific periodicity: (a) is periodic in 8 cells, (b) is periodic in 4 cells, though it
is shown embedded in a space of periodicity 8, (c) is periodic in 6 cells, (d) is periodic in 5
cells. By filling in the spaces it is possible to learn about the effect of different periodicities
on the iterative properties of the mod2 rule. In particular, the length of the repeat time (cy-
cle length) depends on the spatial periodicity. The cycle length may also depend on the spe-
cific initial conditions. ❚
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Question 1.5.4 Which if any of the two rules in Fig 1.5.1 is reversible?

Solution 1.5.4 The majority rule is not reversible, because locally we can-
not identify in the next time step the difference between sequences that con-
tain (11111) and (11011), since both result in a middle three of (111).

A discussion of the mod2 rule is more involved,since we must take into
consideration the size of the space. In the examples of Questions 1.5.1–1.5.3
we see that in the space of six cells the rule is not reversible. In this case sev-
eral initial conditions lead to the same result. The other examples all appear
to be reversible, since each initial condition is part of a cycle that can be run
backward to invert the rule. It turns out to be possible to construct explicitly
the inverse of the mod2 rule. This is done in Question 1.5.5. ❚

Extra Credit Question 1.5.5 Find the inverse of the mod2 rule,when this
is possible. This question involves some careful algebraic manipulation

and may be skipped.

Solution 1.5.5 To find the inverse of the mod2 rule,it is useful to recall that
equality modulo 2 satisfies simple addition properties including:

s1 = s2 ⇒ s1 + s = s2 + s mod2 (1.5.6)

as well as the special property:

2s = 0 mod2 (1.5.7)

Together these imply that variables may be moved from one side of the
equality to the other:

s1 + s = s2 ⇒ s1 = s2 + s mod2 (1.5.8)

Our task is to find the value of all s(i;t) from the values of s(j;t + 1) that
are assumed known. Using Eq. (1.5.8), the mod2 update rule (Eq. (1.5.5))

s(i;t + 1) = (s(i − 1;t) + s(i;t) + s(i + 1;t)) mod2 (1.5.9)

can be rewritten to give us the value of a cell in a layer in terms of the next
layer and its own neighbors:

s(i − 1;t) = s(i ;t + 1) + s(i;t) + s(i + 1;t ) mod2 (1.5.10)

Substitute the same equation for the second term on the right (using one
higher index) to obtain

s(i − 1;t) = s(i;t + 1) + [s(i + 1;t + 1) + s(i + 1;t) + s(i + 2;t)] + s(i + 1;t)
mod2 (1.5.11)

the last term cancels against the middle term of the parenthesis and we have:

s(i − 1;t) = s(i;t + 1) + s(i + 1;t + 1) + s(i + 2;t) mod2 (1.5.12)

It is convenient to rewrite this with one higher index:

s(i;t) = s(i + 1;t + 1) + s(i + 2;t + 1) + s(i + 3;t) mod2 (1.5.13)
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Interestingly, this is actually the solution we have been looking for,
though some discussion is necessary to show this. On the right side of the
equation appear three cell values. Two of them are from the time t + 1, and
one from the time t that we are trying to reconstruct. Since the two cell val-
ues from t + 1 are assumed known, we must know only s(i + 3; t) in order to
obtain s(i;t). We can iterate this expression and see that instead we need to
know s(i + 6;t) as follows:

s(i;t) = s(i + 1;t +1) + s(i + 2;t + 1)

+ s(i + 4;t + 1) + s(i + 5;t +1) + s(i + 6;t)
mod2 (1.5.14)

There are two possible cases that we must deal with at this point. The
first is that the number of cells is divisible by three,and the second is that it
is not. If the number of cells N is divisible by three, then after iterating Eq.
(1.5.13) a total of N/3 times we will have an expression that looks like

s(i;t) = s(i + 1;t +1) + s(i + 2;t + 1)

+ s(i + 4;t + 1) + s(i + 5;t +1) + s(i + 6;t)
mod2 (1.5.15)

+ . . .

+ s(i + N − 2;t + 1) + s(i + N − 1;t + 1) + s(i; t)

where we have used the property of the periodic boundary conditions to set
s(i + n;t) = s(i;t). We can cancel this value from both sides of the equation.
What is left is an equation that states that the sum over particular values of
the cell variables at time t + 1 must be zero.

0 = s(i + 1; t + 1) + s (i + 2; t + 1)

+ s (i + 4; t + 1) + s(i + 5; t +1) + s(i + 6; t)
mod2 (1.5.16)

+ . . .

+ s (i + N − 2; t + 1) + s(i + N − 1; t + 1)

This means that any set of cell values that is the result of the mod2 rule up-
date must satisfy this condition. Consequently, not all possible sets of cell
values can be a result of mod2 updates. Thus the rule is not one-to-one and
is not invertible when N is divisible by 3.

When N is not divisible by three, this problem does not arise, because
we must go around the cell ring three times before we get back to s(i;t). In
this case,the analogous equation to Eq.(1.5.16) would have every cell value
appearing exactly twice on the right of the equation. This is because each cell
appears in two out of the three travels around the ring. Since the cell values
all appear twice,they cancel,and the equation is the tautology 0 = 0. Thus in
this case there is no restriction on the result of the mod2 rule.

We almost have a full procedure for reconstructing s(i; t). Choose the
value of one particular cell variable, say s(1;t) = 0. From Eq.(1.5.13), obtain
in sequence each of the cell variables s(N − 2;t), s(N − 5,t), . . . By going
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around the ring three times we can find uniquely all of the values. We now
have to decide whether our original choice was correct. This can be done by
directly applying the mod2 rule to find the value of say, s(1; t + 1). If we ob-
tain the right value, then we have the right choice; if the wrong value, then
all we have to do is switch all of the cell values to their opposites. How do we
know this is correct?

There was only one other possible choice for the value of s(1; t) = 1. If
we were to choose this case we would find that each cell value was the oppo-
site, or one’s complement, 1 − s(i; t) of the value we found. This can be seen
from Eq. (1.5.13). Moreover, the mod2 rule preserves complementation.
Which means that if we complement all of the values of s(i; t) we will find
the complements of the values of s(1; t + 1). The proof is direct:

1 − s(i;t + 1) = 1 − (s(i − 1;t) + s(i;t) + s(i + 1;t))

= (1 − s(i − 1;t)) + (1 − s(i;t)) + (1 − s(i + 1;t))) − 2 mod2 (1.5.17)

= (1 − s(i − 1;t)) + (1 − s(i;t)) + (1 − s(i + 1;t)))

Thus we can find the unique predecessor for the cell values s(i;t + 1). With
some care it is possible to write down a fully algebraic expression for the
value of s(i;t) by implementing this procedure algebraically. The result f or
N = 3k + 1 is:

mod2 (1.5.18)

A similar result for N = 3k + 2 can also be found.
Note that the inverse of the mod2 rule is not a CA because it is not a lo-

cal rule. ❚

One of the interesting ways to classify CA—introduced by Wolfram—separates
them into four classes depending on the nature of their limiting behavior. This
scheme is particularly interesting for us,since it begins to identify the concept of com-
plex behavior, which we will address more fully in a later chapter. The notion of com-
plex behavior in a spatially distributed system is at least in part distinct from the con-
cept of chaotic behavior that we have discussed previously. Specifically, the
classification scheme is:

Class-one CA: evolve to a fixed homogeneous state

Class-two CA: evolve to fixed inhomogeneous states or cycles

Class-three CA: evolve to chaotic or aperiodic behavior

Class-four CA: evolve to complex localized structures

One example of each class is given in Fig. 1.5.3. It is assumed that the length of the cy-
cles in class-two automata does not grow as the size of the space increases. This clas-
sification scheme has not yet found a firm foundation in analytical work and is sup-
ported largely by observation of simulations of various CA.

    

s(i;t ) = s(i;t +1) + (
j=1

(N −1) /3

∑ s(i + 3 j − 2;t + 1)+ s(i + 3 j;t + 1))
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F i g u re 1.5.3 I l l u s t ra t ion of four CA update rules with ra ndom initial cond i t io ns that are in a
p e r io d ic space with a period of 100 cells. The initial cond i t io ns are shown at the top and time
p roceeds do w nw a rd. Each is updated for 100 steps. O N cells are ind icated as filled squa re s. O F F

cells are not shown. Each of the rules gives the value of a cell in terms of a ne ig h b o r hood of
five cells at the pre v ious time. The ne ig h b o r hood consists of the cell itself and the two cells
to the left and to the rig ht. The rules are known as “totalistic” rules since they de p e nd only
on the sum of the variables in the ne ig h b o r ho o d. Us i ng the no t a t ion si = 0,1, the rules ma y
be re p re s e nted using i(t) = si − 2(t − 1) + si − 1(t − 1) + si(t − 1) + si + 1(t − 1) + si + 2(t − 1 )
by specifying the values of i(t) for which si(t) is O N. T hese are (a) only i(t) = 2, (b) only

i(t) = 3, (c) i(t) = 1 and 2, and (d) i(t) = 2 and 4. See paper 1.3 in Wo l f ram’s collectio n
of articles on CA. ❚
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It has been suggested that class-four automata have properties that enable them
to be used as computers.Or, more precisely, to simulate a computer by setting the ini-
tial conditions to a set of data representing both the program and the input to the
program. The result of the computation is to be obtained by looking some time later
at the state of the system. A criteria that is clearly necessary for an automaton to be
able to act as a computer is that the result of the dynamics is sensitive to the initial
conditions. We will discuss the topic of computation further in Section 1.8.

The flip side of the use of a CA as a model of computation is to design a com-
puter that will simulate CA with high efficiency. Such machines have been built, and
are called cellular automaton machines (CAMs).

1.5.2 2-d cellular automata
Two- and three-dimensional CA provide more opportunities for contact with physi-
cal systems. We illustrate by describing an example of a 2-d CA that might serve as a
simple model of droplet growth during condensation. The rule,il lustrated in part pic-
torially in Fig. 1.5.4, may be described by saying that a particular cell with four or
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Figure 1.5.4 Illustration of a 2-d CA that may be thought of as a simple model of droplet
condensation. The rule sets a cell to be ON (condensed) if four or more of its neighbors are
condensed in the previous time, and OFF (uncondensed) otherwise. There are a total of 2

9
=512

possible initial configurations; of these only 10 are shown. The ones on the left have 4 or
more cells condensed and the ones on the right have less than 4 condensed. This rule is ex-
plained further by Fig. 1.5.5 and simulated in Fig. 1.5.6. ❚
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more “condensed” neighbors at time t is condensed at time t + 1. Neighbors are
counted from the 3 × 3 square region surrounding the cell, including the cell itself.

Fig. 1.5.5 shows a simulation of this rule starting from a random initial starting
point of approximately 25% condensed (ON) and 75% uncondensed (OFF) cells. Over
the first few updates, the random arrangement of dots resolves into droplets, where
isolated condensed cells disappear and regions of higher density become the droplets.
Then over a longer time, the droplets grow and reach a stable configuration.

The characteristics of this rule may be understood by considering the properties
of boundaries between condensed and uncondensed regions,as shown in Fig. 1.5.6.
Boundaries that are vertical,horizontal or at a 45˚ diagonal are stable. Other bound-
aries will move,increasing the size of the condensed region. Moreover, a concave cor-
ner of stable edges is not stable. It will grow to increase the condensed region.On the
other hand,a convex corner is stable. This means that convex droplets are stable when
they are formed of the stable edges.

It can be shown that for this size space,the 25% initial filling is a transition den-
sity, where sometimes the result will fill the space and sometimes it will not. For
higher densities, the system almost always reaches an end point where the whole
space is condensed. For lower densities, the system almost always reaches a stable set
of droplets.

This example illustrates an important point about the dynamics of many sys-
tems, which is the existence of phase transitions in the kinetics of the system. Such
phase transitions are similar in some ways to the thermodynamic phase transitions
that describe the equilibrium state of a system changing from, for example,a solid to
a liquid. The kinetic phase transitions may arise from the choice of initial conditions,
as they did in this example. Alternatively, the phase transition may occur when we
consider the behavior of a class of CA as a function of a parameter. The parameter
gradually changes the local kinetics of the system; however, measures of its behavior
may change abruptly at a particular value. Such transitions are also common in CA
when the outcome of a particular update is not deterministic but stochastic, as dis-
cussed in Section 1.5.4.

1.5.3 Conway’s Game of Life
One of the most popular CA is known as Conway’s Game of Life. Conceptually, it is
designed to capture in a simple way the reproduction and death of biological organ-
isms. It is based on a model where,locally, if there are too few organisms or too many
organisms the organisms will disappear. On the other hand,if the number of organ-
isms is just right,they will multiply. Quite surprisingly, the model takes on a life of its
own with a rich dynamical behavior that is best understood by direct observation.

The specific rule is defined in terms of the 3 × 3 neighborhood that was used in
the last section. The rule,illustrated in Fig. 1.5.7,specifies that when there are less than
three or more than four ON (populated) cells in the neighborhood,the central cell will
be OFF (unpopulated) at the next time. If there are three ON cells,the central cell will
be ON at the next time. If there are four ON cells,then the central cell will keep its pre-
vious state—ON if it was ON and OFF if it was OFF.
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Figure 1.5.5 S i mu l a t ion of the conde ns a t ion CA described in Fig. 1.5.4. The initial cond i t io ns
a re chosen by setting ra ndomly each site O N with a probability of 1 in 4. The initial few steps
result in isolated O N sites disappearing and small ra g ged droplets of O N sites fo r m i ng in hig he r -
de nsity re g io ns. The droplets grow and smo o t hen their bounda r ies until at the sixtieth fra me
a static arra nge me nt of convex droplets is re a c he d. The first few steps are shown on the first
p a ge. Every tenth step is shown on the second page up to the sixtieth. 
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Figure 1.5.5 C o n t i n u e d . T he initial occupation probability of 1 in 4 is near a phase tra ns i-
t ion in the kine t ics of this mo del for a space of this size. For slig htly hig her de ns i t ies the fi-
nal config u ra t ion consists of a droplet covering the whole space. For slig htly lower de ns i t ie s
t he final config u ra t ion is of isolated dro p l e t s. At a probability of 1 in 4 either may occur de-
p e nd i ng on the specific initial state. ❚
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Figure 1.5.6 The droplet condensation model of Fig. 1.5.4 may be understood by noting that
certain boundaries between condensed and uncondensed regions are stable. A completely sta-
ble shape is illustrated in the upper left. It is composed of boundaries that are horizontal,
vertical or diagonal at 45˚. A boundary that is at a different angle, such as shown on the up-
per right, will move, causing the droplet to grow. On a longer length scale a stable shape
(droplet) is illustrated in the bottom figure. A simulation of this rule starting from a random
initial condition is shown in Fig. 1.5.5. ❚
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F i g. 1.5.8 shows a simu l a ti on of the rule starting from the same initial con d i ti on s
u s ed for the con den s a ti on rule in the last secti on . Th ree sequ en tial frames are shown ,
t h en after 100 steps an ad d i ti onal three frames are shown . Frames are also shown after
200 and 300 step s .Af ter this amount of time the rule sti ll has dynamic activi ty from fra m e
to frame in some regi ons of the sys tem , while others are app a ren t ly static or under go sim-
ple cyclic beh avi or. An example of c yclic beh avi or may be seen in several places wh ere
t h ere are hori zontal bars of t h ree O N cells that swi tch every time step bet ween hori zon-
tal and verti c a l . Th ere are many more com p l ex local stru ctu res that repeat cycl i c a lly wi t h
mu ch lon ger repeat cycl e s .Moreover, t h ere are special stru ctu res call ed gl i ders that tra n s-
l a te in space as they cycle thro u gh a set of con f i g u ra ti on s . The simplest gl i der is shown
in Fig. 1 . 5 . 9 ,a l ong with a stru ctu re call ed a gl i der gun, wh i ch cre a tes them peri od i c a lly.

We can make a con n ecti on bet ween Conw ay ’s Game of L i fe and the qu ad ra tic it-
era tive map con s i dered in Secti on 1.1. The ri ch beh avi or of the itera tive map was fo u n d
bec a u s e , for low va lues of the va ri a ble the itera ti on would increase its va lu e , while for
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Figure 1.5.7 The CA rule Conway’s Game of Life is illustrated for a few cases. When there are
fewer than three or more than four neighbors in the 3 × 3 region the central cell is OFF in the
next step. When there are three neighbors the central cell is ON in the next step. When there
are four neighbors the central cell retains its current value in the next step. This rule was de-
signed to capture some ideas about biological organism reproduction and death where too
few organisms would lead to disappearance because of lack of reproduction and too many
would lead to overpopulation and death due to exhaustion of resources. The rule is simulated
in Fig. 1.5.8 and 1.5.9. ❚
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Figure 1.5.8 Simulation of Conway’s Game of Life starting from the same initial conditions
as used in Fig. 1.5.6 for the condensation rule where 1 in 4 cells are ON. Unlike the conden-
sation rule there remains an active step-by-step evolution of the population of ON cells for
many cycles. Illustrated are the three initial steps, and three successive steps each starting
at steps 100, 200 and 300. 
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Figure 1.5.8 Continued. After the initial activity that occurs everywhere, the pattern of ac-
tivity consists of regions that are active and regions that are static or have short cyclical ac-
tivity. However, the active regions move over time around the whole space leading to changes
everywhere. Eventually, after a longer time than illustrated here, the whole space becomes ei-
ther static or has short cyclical activity. The time taken to relax to this state increases with
the size of the space. ❚
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Figure 1.5.9 Special initial conditions simulated using Conway’s Game of Life result in struc-
tures of ON cells called gliders that travel in space while progressing cyclically through a set
of configurations. Several of the simplest type of gliders are shown moving toward the lower
right. The more complex set of ON cells on the left, bounded by a 2 × 2 square of ON cells on
top and bottom, is a glider gun. The glider gun cycles through 30 configurations during which
a single glider is emitted. The stream of gliders moving to the lower right resulted from the
activity of the glider gun. ❚
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h i gh va lues the itera ti on would dec rease its va lu e . Conw ay ’s Game of L i fe and other CA
that ex h i bit intere s ting beh avi or also contain similar nonlinear feed b ack . Moreover, t h e
s p a tial arra n gem ent and coupling of the cells gives rise to a va ri ety of n ew beh avi ors .

1.5.4 Stochastic cellular automata
In addition to the deterministic automaton of Eq. (1.5.3), we can define a stochastic
automaton by the probabilities of transition from one state of the system to another:

P({s(i, j, k; t)}|{s(i, j, k; t − 1)}) (1.5.19)

This general stochastic rule for the 2N states of the system may be simplified.We have
assumed for the deterministic rule that the rule for updating one cell may be per-
formed independently of others. The analog for the stochastic rule is that the update
probabilities for each of the cells is independent. If this is the case,then the total prob-
ability may be written as the product of probabilities of each cell value. Moreover, if
the rule is local,the probability for the update of a particular cell will depend only on
the values of the cell variables in the neighborhood of the cell we are considering.

(1.5.20)

where we have used the notation N(i , j , k ; t) to indicate the values of the cell variables
in the neighborhood of (i , j , k). For example, we might consider modifying the
droplet condensation model so that a cell value is set to be ON with a certain proba-
bility (depending on the number of ON neighbors) and OFF otherwise.

Stochastic automata can be thought of as modeling the effects of noise and more
specifically the ensemble of a dynamic system that is subject to thermal noise. There
is another way to make the analogy between the dynamics of a CA and a thermody-
namic system that is exact—if we consider not the space of the automaton but the
d + 1 dimensional space-time. Consider the ensemble of all possible histories of the
CA. If we have a three-dimensional space,then the histories are a set of variables with
four indices {s(i, j, k, t)}. The probability of a particular set of these variables occur-
ring (the probability of this history) is given by

(1.5.21)

This expression is the product of the probabilities of each update occurring in the his-
tory. The first factor on the right is the probability of a particular initial state in the
ensemble we are considering. If we consider only one starting configuration,its prob-
ability would be one and the others zero.

We can relate the probability in Eq.(1.5.21) to thermodynamics using Boltzmann
probability. We simply set it to the expression for the Boltzmann probability at a par-
ticular temperature T.

P({s(i, j, k,t)}) = e −E({s(i, j, k, t)})/kT (1.5.22)

There is no need to include the normalization constant Z because the probabilities are
automatically normalized. What we have done is to define the energy of the particu-
lar state as:

E({s(i, j, k, t)}) = kT ln (P({s(i, j, k,t)})) (1.5.23)

    

P({s(i, j,k,t)})=
t

∏ P0(s(i, j ,k;t)| N(i, j ,k;t −1))
i ,j,k
∏ P({s(i, j,k;0)})

    

P({s(i, j, k; t)}| {s(i, j, k; t − 1)})= P0(s(i, j, k; t)| N(i, j, k; t − 1))
i, j,k
∏
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This expression shows that any d dimensional automaton can be related to a d + 1 di-
mensional system described by equilibrium Boltzmann probabilities. The ensemble
of the d + 1 dimensional system is the set of time histories of the automaton.

There is an important cautionary note about the conclusion reached in the last
paragraph. While it is true that time histories are directly related to the ensemble of a
thermodynamic system,there is a hidden danger in this analogy. These are not typi-
cal thermodynamic systems, and therefore our intuition about how they should be-
have is not trustworthy. For example, the time direction may be very different from
any of the space directions. For the d + 1 dimensional thermodynamic system, this
means that one of the directions must be singled out. This kind of asymmetry does
occur in thermodynamic systems, but it is not standard. Another example of the dif-
ference between thermodynamic systems and CA is in their sensitivity to boundary
conditions. We have seen that many CA are quite sensitive to their initial conditions.
While we have shown this for deterministic automata,it continues to be true for many
stochastic automata as well. The analog of the initial conditions in a d + 1 dimensional
thermodynamic system is the surface or boundary conditions. Thermodynamic sys-
tems are typically insensitive to their boundary conditions. However, the relationship
in Eq.(1.5.23) suggests that at least some thermodynamic systems are quite sensitive
to their boundary conditions. An interesting use of this analogy is to attempt to dis-
cover special thermodynamic systems whose behavior mimics the interesting behav-
ior of CA.

1.5.5 CA generalizations
There are a variety of generalizations of the simplest version of CA which are useful
in developing models of particular systems. In this section we briefly describe a few of
them as illustrated in Fig. 1.5.10.

It is often convenient to consider more than one variable at a particular site.
One way to think about this is as multiple spaces (planes in 2-d,lines in 1-d) that are
coupled to each other. We could think about each space as a different physical quan-
tity. For example, one might represent a magnetic field and the other an electric
field. Another possibility is that we might use one space as a thermal reservoir. The
system we are actually interested in might be simulated in one space and the thermal
reservoir in another. By considering various combinations of multiple spaces repre-
senting a physical system, the nature of the physical system can become quite rich in
its structure.

We can also consider the update rule to be a compound rule formed of a sequence
of steps.Each of the steps updates the cells. The whole rule consists of cycling through
the set of individual step rules. For example,our update rule might consist of two dif-
ferent steps. The first one is performed on every odd step and the second is performed
on every even step. We could reduce this to the previous single update step case by
looking at the composite of the first and second steps. This is the same as looking at
only every even state of the system. We could also reduce this to a multiple space rule,
where both the odd and even states are combined together to be a single step.
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However, it may be more convenient at times to think about the system as perform-
ing a cycle of update steps.

Finally, we can allow the state of the system at a particular time to depend on the
state of the system at several previous times,not just on the state of the system at the
previous time.A rule might depend on the most recent state of the system and the pre-
vious one as well. Such a rule is also equivalent to a rule with multiple spaces, by con-
sidering both the present state of the system and its predecessor as two spaces. One
use of considering rules that depend on more than one time is to enable systematic
construction of reversible deterministic rules from nonreversible rules. Let the origi-
nal (not necessarily invertible) rule be R(N(i, j, k ; t)). A new invertible rule can be
written using the form

s(i, j, k ; t) = mod2(R(N(i, j, k ;t − 1)) + s(i, j, k ; t − 2)) (1.5.24)

The inverse of the update rule is immediately constructed using the properties of ad-
dition modulo 2 (Eq. (1.5.8)) as:

s(i, j, k ; t − 2) = mod2(R(N(i, j, k ; t − 1)) + s(i, j, k ; t)) (1.5.25)

1.5.6 Conserved quantities and Margolus dynamics
Standard CA are not well suited to the description of systems with constraints or con-
servation laws. For example, if we want to conserve the number of ON cells we must
establish a rule where turning OFF one cell (switching it from ON to OFF) is tied to
turning ON another cell. The standard rule considers each cell separately when an up-
date is performed. This makes it difficult to guarantee that when this particular cell is
turned OFF then another one will be turned ON. There are many examples of physical
systems where the conservation of quantities such as number of particles, energy and
momentum are central to their behavior.

A systematic way to construct CA that describe systems with conserved quanti-
ties has been developed. Rules of this kind are known as partitioned CA or Margolus
rules (Fig. 1.5.11). These rules separate the space into nonoverlapping partitions (also
known as neighborhoods). The new value of each cell in a partition is given in terms
of the previous values of the cells in the same partition. This is different from the con-
ventional automaton, since the local rule has more than one output as well as more
than one input. Such a rule is not sufficient in itself to describe the system update,
since there is no communication in a single update between different partitions. The
complete rule must specify how the partitions are shifted after each update with re-
spect to the underlying space. This shifting is an essential part of the dynamical rule
that restores the cellular symmetry of the space.

The convenience of this kind of CA is that specification of the rule gives us direct
control of the dynamics within each partition, and therefore we can impose conser-
vation rules within the partition. Once the conservation rule is imposed inside the
partition, it will be maintained globally—throughout the whole space and through
every time step. Fig. 1.5.12 illustrates a rule that conserves the number of ON cells in-
side a 2 × 2 neighborhood. The ON cells may be thought of as particles whose num-
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Figure 1.5.10 Schematic illustrations of several modifications of the simplest CA rule. The
basic CA rule updates a set of spatially arrayed cell variables shown in (a). The first modifi-
cation uses more than one variable in each cell. Conceptually this may be thought of as de-
scribing a set of coupled spaces, where the case of two spaces is shown in (b). The second
modification makes use of a compound rule that combines several different rules, where the
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case of two rules is shown in (c). The third modification shown in (d) makes use of a rule that
depends on not just the most recent value of the cell variables but also the previous one. Both
(c) and (d) may be described as special cases of (b) where two successive values of the cell
variables are considered instead as occurring at the same time in different spaces. ❚
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Conventional CA rule

Partitioned (Margolus) CA rule

Partition Alternation

Figure 1.5.11 Pa r t i t io ned CA (Ma rgolus rules) enable the imposition of cons e r v a t ion laws in
a direct way. A convent io nal CA gives the value of an ind i v idual cell in terms of the pre v io u s
values of cells in its ne ig h b o r hood (top). A partitio ned CA gives the value of several cells in a
p a r t icular partition in terms of the pre v ious values of the same cells (center). This enables con-
s e r v a t ion rules to be imposed directly within a particular partition. An example is given in Fig .
1.5.12. In add i t ion to the rule for upda t i ng the partition, the dy na m ics must specify how the
p a r t i t io ns are to be shifted from step to step. For example (bottom), the use of a 2 × 2 parti-
t ion may be impleme nted by alterna t i ng the partitio ns from the solid lines to the da s hed line s.
Every even update the da s hed lines are used and every odd update the solid lines are used to
p a r t i t ion the space. This re s t o res the cellular perio d icity of the space and enables the cells to
c o m mu n icate with each othe r, which is not possible without the shifting of partitio ns. ❚
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ber is conserved. The only requirement is that each of the possible arrangement of
particles on the left results in an arrangement on the right with the same number of
particles. This rule is augmented by specifying that the 2 × 2 partitions are shifted by
a single cell to the right and down after every update. The motion of these particles is
that of an unusual gas of particles.

The rule shown is only one of many possible that use this 2 × 2 neighborhood
and conserve the number of particles. Some of these rules have additional properties
or symmetries.A rule that is constructed to conserve particles may or may not be re-
versible. The one illustrated in Fig. 1.5.12 is not reversible. There exist more than one
predecessor for particular values of the cell variables. This can be seen from the two
mappings on the lower left that have the same output but different input.A rule that
conserves particles also may or may not have a particular symmetry, such as a sym-
metry of reflection.A symmetry of reflection means that reflection of a configuration
across a particular axis before application of the rule results in the same effect as re-
flection after application of the rule.

The existence of a well-defined set of rules that conserves the number of parti-
cles enables us to choose to study one of them for a specific reason. Alternatively, by
randomly constructing a rule which conserves the number of particles, we can learn
what particle conservation does in a dynamical system independent of other regular-
ities of the system such as reversibility and reflection or rotation symmetries. More
systematically, it is possible to consider the class of automata that conserve particle
number and investigate their properties.

Question 1.5.6 Design a 2-d Margolus CA that represents a particle or
chemical reaction: A + B ↔ C. Discuss some of the parameters that must

be set and how you could use symmetries and conservation laws to set them.

Solution 1.5.6 We could use a 2 × 2 partition just like that in Fig. 1.5.12.
On each of the four squares there can appear any one of the four possibili-
ties (O, A, B, C). There are 44 = 256 different initial conditions of the parti-
tion.Each of these must be paired with one final condition,if the rule is de-
terministic. If the rule is probabilistic, then probabilities must be assigned
for each possible transition.

To represent a chemical reaction, we choose cases where A and B are ad-
jacent (horizontally or vertically) and replace them with a C and a 0. If we
prefer to be consistent, we can always place the C where A was before. To go
the other direction, we take cases where C is next to a 0 and replace them with
an A and a B. One question we might ask is, Do we want to have a reaction
whenever it is possible, or do we want to assign some probability for the re-
action? The latter case is more interesting and we would have to use a prob-
abilistic CA to represent it. In addition to the reaction, the rule would in-
clude particle motion similar to that in Fig. 1.5.12.

To apply symmetries, we could assume that reflection along horizontal
or vertical axes, or rotations o f the partition by 90˚ before the update, will
have the same effect as a reflection or rotation of the partition after the
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update. We could also assume that A, B and C move in the same way when
they are by themselves. Moreover, we might assume that the rule is symmet-
ric under the transformation A ↔ B.

There is a simpler approach that requires enumerating many fewer states.
We choose a 2 × 1 rectangular partition that has only two cells,and 42 = 16
possible states. Of these, four do not change: [A,A], [B,B], [C,C] and [0,0].
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Figure 1.5.12 Illustration of a particular 2-d Margolus rule that preserves the number of ON

cells which may be thought of as particles in a gas. The requirement for conservation of num-
ber of particles is that every initial configuration is matched with a final configuration hav-
ing the same number of ON cells. This particular rule does not observe conventional symme-
tries such as reflection or rotation symmetries that might be expected in a typical gas. Many
rules that conserve particles may be constructed in this framework by changing around the
final states while preserving the number of particles in each case. ❚
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Eight others are paired because the cell values can be switched to achieve
particle motion (with a certain probability): [A,0] ↔ [0,A], [B,0] ↔ [0,B],
[C,A] ↔ [A,C],and [C,B] ↔ [B,C].Finally, the last four, [C,0],[0,C], [A,B]
and [B, A],can participate in reactions. If the rule is deterministic,they must
be paired in a unique way for possible transitions. Otherwise,each possibil-
ity can be assigned a probability:[C,0] ↔ [A,B],[0,C] ↔ [B,A],[C,0] ↔[B,A]
and [0,C] ↔ [A,B]. The switching of the particles without undergoing reac-
tion for these states may also be allowed with a certain probability. Thus,each
of the four states can have a nonzero transition probability to each of the oth-
ers. These probabilities may be related by the symmetries mentioned before.
Once we have determined the update rule for the 2x1 partition, we can choose
several ways to map the partitions onto the plane.The simplest are obtained
by dividing each of the 2 × 2 partitions in Fig. 1.5.11 horizontally or verti-
cally. This gives a total of four ways to partition the plane. These four can al-
ternate when we simulate this CA. ❚

1.5.7 Differential equations and CA
Cellular automata are an alternative to differential equations for the modeling of
physical systems. Differential equations when modeled numerically on a computer
are often discretized in order to perform integrals. This discretization is an approxi-
mation that might be considered essentially equivalent to setting up a locally discrete
dynamical system that in the macroscopic limit reduces to the differential equation.
Why not then start from a discrete system and prove its relevance to the problem of
interest? This a priori approach can provide distinct computational advantages. This
argument might lead us to consider CA as an approximation to differential equa-
tions. However, it is possible to adopt an even more direct approach and say that dif-
ferential equations are themselves an approximation to aspects of physical reality. CA
are a different but equally valid approach to approximating this reality. In general,
differential equations are more convenient for analytic solution while CA are more
convenient for simulations. Since complex systems of differential equations are often
solved numerically anyway, the alternative use of CA appears to be worth systematic
consideration.

While both cellular automata and differential equations can be used to model
macroscopic systems,this should not be taken to mean that the relationship between
differential equations and CA is simple. Recognizing a CA analog to a standard dif-
ferential equation may be a difficult problem.One of the most extensive efforts to use
CA for simulation of a system more commonly known by its differential equation is
the problem of hydrodynamics. Hydrodynamics is typically modeled by the Navier-
Stokes equation. A type of CA called a lattice gas (Section 1.5.8) has been designed
that on a length scale that is large compared to the cellular scale reproduces the be-
havior of the Navier-Stokes equation. The difficulties of solving the differential equa-
tion for specific boundary conditions make this CA a powerful tool for studying hy-
drodynamic flow.
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A frequently occurring differential equation is the wave equation. The wave equa-
tion describes an elastic medium that is approximated as a continuum. The wave
equation emerges as the continuum limit of a large variety of systems. It is to be ex-
pected that many CA will also display wavelike properties. Here we use a simple ex-
ample to illustrate one way that wavelike properties may arise. We also show how the
analogy may be quite different than intuition might suggest. The wave equation writ-
ten in 1-d as

(1.5.26)

has two types of solutions that are waves traveling to the right and to the left with wave
vectors k and frequencies of oscillation k = ck:

(1.5.27)

A particular solution is obtained by choosing the coefficients Ak and Bk. These solu-
tions may also be written in real space in the form:

f = Ã(x − ct) + B̃(x + ct) (1.5.28)

where

(1.5.29)

are two arbitrary functions that specify the initial conditions of the wave in an infi-
nite space.

We can construct a CA analog of the wave equation as illustrated in Fig. 1.5.13. It
should be understood that the wave equation will arise only as a continuum or long
wave limit of the CA dynamics.However, we are not restricted to considering a model
that mimics a vibrating elastic medium. The rule we construct consists of a 1-d par-
titioned space dynamics.Each update, adjacent cells are paired into partitions of two
cells each. The pairing switches from update to update,analo gous to the 2-d example
in Fig. 1.5.11. The dynamics consists solely of switching the contents of the two adja-
cent cells in a single partition. Starting from a particular initial configuration, it can
be seen that the contents of the odd cells moves systematically in one direction (right
in the figure),while the contents of the even cells moves in the opposite direction (left
in the figure). The movement proceeds at a constant velocity of c = 1 cell/update. Thus
we identify the contents of the odd cells as the rightward traveling wave,and the even
cells as the leftward traveling wave.

The dynamics of this CA is the same as the dynamics of the wave equation of
Eq.(1.5.28) in an infinite space. The only requirement is to encode appropriately the
initial conditions Ã(x), B̃(x) in the cells. If we use variables with values in the conven-

    

˜ A (x) = Akeikx

k
∑

˜ B (x) = Bkeikx

k
∑
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tional real continuum si ∈ℜ , then the (discretized) waves may be encoded directly. If
a binary representation si = ±1 is used, the local average over odd cells represents the
right traveling wave Ã(x − ct),and the local average over even cells represents the left
traveling wave B̃(x + ct).

1.5.8 Lattice gases
A lattice gas is a type of CA designed to model gases or liquids of colliding particles.
Lattice gases are formulated in a way that enables the collisions to conserve
momentum as well as number of particles. Momentum is represented by setting the
velocity of each particle to a discrete set of possibilities.A simple example, the HPP
gas,is illustrated in Fig. 1.5.14.Each cell contains four binary variables that represent
the presence (or absence) of particles with unit velocity in the four compass directions
NESW. In the figure,the presence of a particle in a cell is indicated by an arrow. There
can be up to four particles at each site.Each particle present in a single cell must have
a distinct velocity.
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Figure 1.5.13 A simple 1-d CA using a Margolus rule, which switches the values of the two
adjacent cells in the partition, can be used to model the wave equation. The partitions al-
ternate between the two possible ways of partitioning the cells every time step. It can be
seen that the initial state is propagated in time so that the odd (even) cells move at a fixed
rate of one cell per update to the right (left). The solutions of the wave equation likewise
consist of a right and left traveling wave. The initial conditions of the wave equation solu-
tion are the analog of the initial condition of the cells in the CA. ❚
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The dynamics of the HPP gas is performed in two steps that alternate: propaga-
tion and collision. In the propagation step, particles move from the cell they are in to
the neighboring cell in the direction of their motion. In the collision step, each cell
acts independently, changing the particles from incoming to outgoing according to
prespecified collision rules. The rule for the HPP gas is illustrated in Fig. 1.5.15.
Because of momentum conservation in this rule, there are only two possibilities for
changes in the particle velocity as a result of a collision.A similar lattice gas,the FHP
gas, which is implemented on a hexagonal lattice of cells rather than a square lattice,
has been proven to give rise to the Navier-Stokes hydrodynamic equations on a
macroscopic scale. Due to properties of the square lattice in two dimensions, this be-
havior does not occur for the HPP gas. One way to understand the limitation of the
square lattice is to realize that for the HPP gas (Fig. 1.5.14),momentum is conserved
in any individual horizontal or vertical stripe of cells. This type of conservation law is
not satisfied by hydrodynamics.

1.5.9 Material growth
One of the natural physical systems to model using CA is the problem of layer-by-
layer material growth such as is achieved in molecular beam epitaxy. There are many
areas of study of the growth of materials. For example,in cases where the material is
formed of only a single type of atom,it is the surface structure during growth that is
of interest. Here, we focus on an example of an alloy formed of several different atoms,
where the growth of the atoms is precisely layer by layer. In this case the surface struc-
ture is simple, but the relative abundance and location of different atoms in the ma-
terial is of interest. The simplest case is when the atoms are found on a lattice that is
prespecified, it is only the type of atom that may vary.

The analogy with a CA is established by considering each layer of atoms, when it
is deposited, as represented by a 2-d CA at a particular time. As shown in Fig. 1.5.16
the cell values of the automaton represent the type of atom at a particular site. The
values of the cells at a particular time are preserved as the atoms of the layer deposited
at that time. It is the time history of the CA that is to be interpreted as representing
the structure of the alloy. This picture assumes that once an atom is incorporated in
a complete layer it does not move.

In order to construct the CA, we assume that the probability of a particular atom
being deposited at a particular location depends on the atoms residing in the layer
immediately preceding it. The stochastic CA rule in the form of Eq.(1.5.20) specifies
the probability of attaching each kind of atom to every possible atomic environment
in the previous layer.

We can illustrate how this might work by describing a specific example.There ex-
ist alloys formed out of a mixture of gallium,arsenic and silicon.A material formed
of equal proportions of gallium and arsenic forms a GaAs crystal, which is exactly like
a silicon crystal, except the Ga and As atoms alternate in positions. When we put sili-
con together with GaAs then the silicon can substitute for either the Ga or the As
atoms. If there is more Si than GaAs, then the crystal is essentially a Si crystal with
small regions of GaAs,and isolated Ga and As. If there is more GaAs than Si,then the
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Propagation step

Collision step

Figure 1.5.14 Illustration of the
update of the HPP lattice gas. In a
lattice gas, binary variables in each
cell indicate the presence of parti-
cles with a particular velocity. Here
there are four possible particles in
each cell with unit velocities in the
four compass directions, NESW.
Pictorially the presence of a particle
is indicated by an arrow in the di-
rection of its velocity. Updating the
lattice gas consists of two steps:
propagating the particles according
to their velocities, and allowing the
particles to collide according to a
collision rule. The propagation step
consists of moving particles from
each cell into the neighboring cells
in the direction of their motion. The
collision step consists of each cell
independently changing the veloci-
ties of its particles. The HPP colli-
sion rule is shown in Fig. 1.5.15, and
implemented here from the middle
to the bottom panel. For conve-
nience in viewing the different steps
the arrows in this figure alternate
between incoming and outcoming.
Particles before propagation (top)
are shown as outward arrows from
the center of the cell. After the prop-
agation step (middle) they are
shown as incoming arrows. After col-
lision (bottom) they are again
shown as outgoing arrows. ❚
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t t

Figure 1.5.16 Illustration of the time history of a CA and its use to model the structure of
a material (alloy) formed by a layer by layer growth. Each horizontal dashed line represents
a layer of the material. The alloy has three types of atoms. The configuration of atoms in each
layer depends only on the atoms in the layer preceding it. The type of atom, indicated in the
figure by filled, empty and shaded dots, are determined by the values of the cell variables of
the CA at a particular time, si(t) = ±1,0. The time history of the CA is the structure of the
material. ❚

Figure 1.5.15 The
collision rule for
the HPP lattice gas.
With the exception
of the case of two
particles coming in
from N and S and
leaving from E and
W, or vice versa
(dashed box), there
are no changes in
the particle veloci-
ties as a result of
collisions in this
rule. Momentum
conservation does
not allow any other
changes. ❚
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crystal will be essentially a GaAs crystal with isolated Si atoms. We can model the
growth of the alloys formed by different relative proportions of GaAs and Si of the
form (GaAs)1-xSix using a CA. Each cell of the CA has a variable with three possible
values si = ±1,0 that would represent the occupation of a crystal site by Ga, As and Si
respectively. The CA rule (Eq. (1.5.20)) would then be constructed by assuming dif-
ferent probabilities for adding a Si, Ga and As atom at the surface. For example, the
likelihood of finding a Ga next to a Ga atom or an As next to an As is small, so the
probability of adding a Ga on top of a Ga can be set to be much smaller than other
probabilities. The probability of an Si atom si = 0 could be varied to reflect different
concentrations of Si in the growth. Then we would be able to observe how the struc-
ture of the material changes as the Si concentration changes.

This is one of many examples of physical, chemical and biological systems that
have been modeled using CA to capture some of their dynamical properties. We will
encounter others in later chapters.

Statistical Fields

In real systems as well as in kinetic models such as cellular automata (CA) discussed
in the previous section, we are often interested in finding the state of a system—the
time averaged (equilibrium) ensemble when cycles or randomness are present—that
arises after the fast initial kinetic processes have occurred. Our objective in this sec-
tion is to treat systems with many degrees of freedom using the tools of equilibrium
statistical mechanics (Section 1.3). These tools describe the equilibrium ensemble di-
rectly rather than the time evolution. The simplest example is a collection of inter-
acting binary variables, which is in many ways analogous to the simplest of the CA
models. This model is known as the Ising model,and was introduced originally to de-
scribe the properties of magnets.Each of the individual variables corresponds to a mi-
croscopic magnetic region that arises due to the orbital motion of an electron or the
internal degree of freedom known as the spin of the electron.

The Ising model is the simplest model of i n teracting degrees of f reedom . E ach 
of the va ri a bles is bi n a ry and the interacti ons bet ween them are on ly spec i f i ed by on e
p a ra m eter—the strength of the interacti on . Rem a rk a bly, m a ny com p l ex sys tems we
wi ll be con s i dering can be model ed by the Ising model as a first approx i m a ti on . We
wi ll use several vers i ons of the Ising model to discuss neu ral net works in Ch a pter 2 and
pro teins in Ch a pter 4. The re a s on for the usefulness of this model is the very ex i s ten ce
of i n teracti ons bet ween the el em en t s . This interacti on is not pre s ent in simpler mod-
els and re sults in va rious beh avi ors that can be used to understand some of the key as-
pects of com p l ex sys tem s . The con cepts and tools that are used to stu dy the Ising model
also may be tra n s ferred to more com p l i c a ted model s . It should be unders tood , h ow-
ever, that the Ising model is a simplistic model of m a gn ets as well as of o t h er sys tem s .

In Section 1.3 we considered the ideal gas with collisions. The collisions were a
form of interaction. However, these interactions were incidental to the model because
they were assumed to be so short that they were not present during observation. This
is no longer true in the Ising model.

1.6
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1.6.1 The Ising model without interactions
The Ising model describes the energy of a collection of elements (spins) represented
by binary variables.It is so simple that there is no kinetics, only an energy E[{si}].Later
we will discuss how to reintroduce a dynamics for this model. The absence of a dy-
namics is not a problem for the study of the equilibrium properties of the system,
since the Boltzmann probability (Eq.(1.3.29)) depends only upon the energy. The en-
ergy is sp ecified as a function of the values of the binary variables {si = ±1}. Unless
necessary, we will use one index for all of the spin variables regardless of dimension-
ality. The use of the term “spin” originates from the magnetic analogy. There is no
other specific term,so we adopt this terminology. The term “spin” emphasizes that the
binary variable represents the state of a physical entity such that the collection of spins
is the system we are interested in.A spin can be il lustrated as an arrow of fixed length
(see Fig. 1.6.1). The value of the binary variable describes its orientation, where +1 in-
dicates a spin oriented in the positive z direction (UP),and –1 indicates a spin oriented
in the negative z direction (DOWN).

Before we consider the effects of interactions between the spins, we start by con-
sidering a system where there are no interactions. We can write the energy of such a
system as:

(1.6.1)

Where ei(si) is the energy of the i th spin that does not depend on the values of any of
the other spins. Since si are binary we can write this as:

(1.6.2)

All of the terms that do not depend on the spin va ri a bles have been co ll ected toget h er
i n to a con s t a n t . We set this constant to zero by redefining the en er gy scale. The qu a n ti-
ties {hi} de s c ri be the en er gy due to the ori en t a ti on of the spins. In the magn etic sys tem
t h ey corre s pond to an ex ternal magn etic field that va ries from loc a ti on to loc a ti on .L i ke
s m a ll magn et s , spins try to ori ent along the magn etic fiel d . A spin ori en ted along the
m a gn etic field (si and hi h ave the same sign) has a lower en er gy than if it is anti p a ra ll el
to the magn etic fiel d . As in Eq .( 1 . 6 . 2 ) , the con tri buti on of the magn etic field to the en-
er gy is −|hi | ( |hi| ) wh en the spin is para ll el (anti p a ra ll el) to the field directi on . Wh en con-
ven i ent we wi ll simplify to the case of a uniform magn etic fiel d , hi = h.

Wh en the spins are non i n teracti n g, the Ising model redu ces to a co ll ecti on of t wo -
s t a te sys tems that we inve s ti ga ted in Secti on 1.4. L a ter, wh en we introdu ce interacti on s
bet ween the spins, t h ere wi ll be differen ce s . For the non i n teracting case we can wri te the
prob a bi l i ty for a particular con f i g u ra ti on of the spins using the Boltzmann prob a bi l i ty:

(1.6.3)

    
P[{s i }]=

e − E[{si }]

Z
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e
hi s i

i
∑

Z
=

e hi s i

i

∏
Z

    

E[{s i }]=
1

2
(ei (1)− ei (−1))si

i

∑ + (ei (1)+ ei (−1)) = E0 – his i

i

∑ → – his i

i

∑

    

E[{s i }]= ei (s i )
i

∑
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Figure 1.6.1 One way to visualize the Ising model is as a spatial array of binary variables
called spins, represented as UP or DOWN arrows. A one-dimensional (1-d) example with all spins
UP is shown on top. The middle and lower figures show two-dimensional (2-d) arrays which
have all spins UP (middle) or have some spins UP and some spins DOWN (bottom). ❚
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where = 1/kT. The partition function Z is given by:

(1.6.4)

where the second to last equality replaces the sum over all possible values of the spin
variables with a sum over each spin variable si = ±1 within the product. Thus the prob-
ability factors as:

(1.6.5)

This is a product over the result we found for probability of the two-state system (Eq.
(1.4.14)) if we write the energy of a single spin using the notation Ei(si) = –hisi.

Now that we have many spin variables, we can investigate the thermodynamics of
this model by writing down the free energy and entropy of this model. This is dis-
cussed in Question 1.6.1.

Question 1.6.1 Evaluate the thermodynamic free energy, energy and en-
tropy for the Ising model without interactions.

Solution 1.6.1 The free energy is given in terms of the partition function
by Eq. (1.3.37):

(1.6.6)

The latter expression is a more common way of writing this result.
The thermodynamic energy of the system is found from Eq.(1.3.38) as

(1.6.7)

Th ere is another way to obtain the same re su l t . The therm odynamic en er gy is
the avera ge en er gy of the sys tem (Eq .( 1 . 3 . 3 0 ) ) , wh i ch can be eva lu a ted direct ly:

(1.6.8)

which is the same as before. We have used the possibility of writing the prob-
ability of a single spin variable independent of the others in order to perform
this average. It is convenient to define the local magnetization mi as the av-
erage value of a particular spin variable:

(1.6.9)
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Or using Eq. (1.6.5):

(1.6.10)

In Fig. 1 . 6 . 2 , the magn eti z a ti on at a particular site is plotted as a functi on of t h e
m a gn etic field for several different tem pera tu res ( = 1 /kT ) .The magn eti z a ti on
i n c reases with increasing magn etic field and with dec reasing tem pera tu re unti l
it satu ra tes asym pto ti c a lly to a va lue of +1 or –1. In terms of the magn eti z a ti on
the en er gy is:

(1.6.11)

We can calculate the entropy of the Ising model using Eq. (1.3.36)

(1.6.12)
    

S = k U +k lnZ = −k hi tanh(
i

∑ hi ) + k ln
i

∑ 2cosh hi( )( )

    

U = – himi

i

∑

    
mi = si = tanh( hi )
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Figure 1.6.2 Plot of the magnetization at a particular site as a function of the magnetic field
for independent spins in a magnetic field. The magnetization is the average of the spin value,
so the magnetization shows the degree to which the spin is aligned to the magnetic field.
The different curves are for several temperatures = 0.5,1,2 ( = 1/kT). The magnetization
has the same sign as the magnetic field. The magnitude of the spin increases with increasing
magnetic field. Increasing temperature, however, decreases the alignment due to increased
random motion of the spins. The maximum magnitude of the magnetization is 1, correspond-
ing to a fully aligned spin. ❚
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which is not particularly enlightening. However, we can rewrite this in terms
of the magnetization using the identity:

(1.6.13)

and the inverse of Eq. (1.6.10):

(1.6.14)

Substituting into Eq. (1.6.12) gives

(1.6.15)

Rearranging slightly, we have:

(1.6.16)

The final expression can be derived,at least for the case when all mi are
the same, by counting the number of states directly. It is worth deriving the
entropy twice,because it may be used more generally than this treatment in-
dicates. We will assume that all hi = h are the same. The energy then depends
only on the total magnetization:

(1.6.17)

To obtain the entropy from the counting of states (Eq.(1.3.25)) we evaluate
the number of states within a particular narrow energy range. Since the en-
ergy is the sum over the values of the spins,it may also be written as the dif-
ference between the number of UP spins N(1) and DOWN spins N(−1):

E[{si}] = –h(N(1) − N(−1)) (1.6.18)

Thus, to find the entropy for a particular energy we must count how many
states there are with a particular number of UP and DOWN spins. Moreover,
flipping a spin from DOWN to UP causes a fixed increment in the energy.
Thus there is no need to include in the counting the width of the energy in-
terval in which we are counting states. The number of states with N(1) UP

spins and N(−1) DOWN spins is:

(1.6.19)
    

(E,N) =
N

N(1)

 

 
 

 

 
 =

N!

N(1)!N(−1)!

    

E[{s i }]= –h si
i

∑
U = –h mi

i
∑ = −hNm

    

S = +k N ln(2)−
1

2
(1 + mi )ln 1+ mi( )+ (1− mi )ln 1− mi( )( )

i

∑
 

 
 
 

 

 
 
 

    

S = −k m i
1

2
ln

1+ mi

1− mi

 

 
 

 

 
 

i

∑ +kN ln(2) −k
1

2
ln

i

∑ 1− mi

2 
 
 

 
 
 

    

hi =
1

2
ln

1+ mi

1− mi

 

 
 

 

 
 

    

cosh(x) =
1

1− tanh2(x)

150 I n t r oduc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 150
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 150



The ent ropy can be written using Sterling’s approximation (Eq. (1.2.27)),
neglecting terms that are less than of order N, as:

S = k ln( (E,N)) = k[N(lnN − 1) − N(1)(lnN(1) −1) − N(−1)(lnN(−1)–1]

= k[N lnN − N(1)lnN(1) − N(−1)lnN(−1)] (1.6.20)

the latter following from N = N(1) + N(−1). To simplify this expression fur-
ther, we write it in terms of the magnetization. Using Ps i

(−1) + Psi
(1) = 1 and

Eq. (1.6.9) for the magnetization we have the probability that a particular
spin is UP and DOWN in terms of the magnetization as:

Psi
(1) = (1 + m) / 2

Psi
(−1) = (1 − m) / 2

(1.6.21)

Since there are many spins in the system, we can obtain the number of UP

spins using

N(1) = NPsi
(1) = N(1 + m) / 2

N(−1) = NPsi
(1) = N(1 − m) / 2

(1.6.22)

Using these expressions, Eq.(1.6.20) becomes the same as Eq.(1.6.16), with
hi = h.

There is an important difference between the two derivations, in that
the second assumed that all of the magnetic fields were the same. Thus, the
first derivation appears more general. However, since the original system has
no interactions, we could consider each of the spins with its own field hi as a
separate system. If we want to calculate the entropy of the individual spin,
we would consider an ensemble of such spins. The ensemble consists of
many spins with the same field h = hi. The derivation of the entropy using
the ensemble would be identical to the derivation we have just given, except
that at the end we would divide by the number of different systems in the en-
semble N. Adding together the entropies of different spins would then give
exactly Eq. (1.6.16).

The en tropy of a spin from Eq . (1.6.16) is maximal for a magn eti z a ti on of
zero wh en it has the va lue k l n ( 2 ) . From the ori ginal def i n i ti on of the en tropy,
this corre s ponds to the case wh en there are ex act ly two different po s s i ble state s
of the sys tem . It thus corre s ponds to the case wh ere the prob a bi l i ty of e ach
s t a te s = ±1 is 1/2. The minimal en tropy is for ei t h er m = 1 or m = −1—wh en
t h ere is on ly one po s s i ble state of the spin, so the en tropy must be zero. ❚

1.6.2 The Ising model
We now add the essential aspect of the Ising model—interactions between the spins.
The location of the spins in space was unimportant in the case of the noninteracting
model. However, for the interacting model, we consider the spins to be located on a
periodic lattice in space. Similar to the CA models of Section 1.5, we allow the spins
to interact only with their nearest neighbors. It is conventional to interpret neighbors
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strictly as the spins with the shortest Euclidean distance from a particular site. This
means that for a cubic lattice there are two, four and six neighbors in one, two and
three dimensions respectively. We will assume that the interaction with each of the
neighbors is the same and we write the energy as:

(1.6.23)

The notation <ij> under the summation indicates that the sum is to be performed
over all i and j that are nearest neighbors. For example,in one dimension this could
be written as:

(1.6.24)

If we wanted to emphasize that each spin interacts with its two neighbors, we could
write this as

(1.6.25)

wh ere the factor of 1/2 corrects for the do u ble co u n ting of the interacti on bet ween every
t wo nei gh boring spins. In two and three dimen s i ons (2-d and 3-d), t h ere is need of ad-
d i ti onal indices to repre s ent the spatial depen den ce . We could wri te the en er gy in 2-d as:

(1.6.26)

and in 3-d as:

(1.6.27)

In these sums,each nearest neighbor pair appears only once. We will be able to hide
the additional indices in 2-d and 3-d by using the nearest neighbor notation <ij> as
in Eq. (1.6.23).

The interacti on J bet ween spins may arise from many different source s . Similar to
the deriva ti on of hi in Eq .( 1 . 6 . 2 ) , this is the on ly form that an interacti on bet ween two
spins can take (Questi on 1.6.2). Th ere are two disti n ct po s s i bi l i ties for the beh avi or of
the sys tem depending on the sign of the interacti on . Ei t h er the interacti on tries to ori-
ent the spins in the same directi on (J > 0) or in the oppo s i te directi on (J < 0). The for-
m er is call ed a ferrom a gn et and is the com m on form of a magn et . The other is call ed
an anti ferrom a gn et (Secti on 1.6.4) and has very different ex ternal properties but can
be repre s en ted by the same model , with J h aving the oppo s i te sign .

Question 1.6.2 Show that the form of the interaction given in Eq.
(1.6.24) Jss ′ is the most general interaction between two spins.

Solution 1.6.2 We write as a general form of the energy of two spins:

    

E[{s i, j,k}]= – hi, j,ks i, j,k

i ,j,k

∑ − J (si ,j ,ksi +1, j,k

i , j,k

∑ + si ,j,ks i ,j+1,k +s i, j,ks i, j,k+1)

    

E[{s i, j }]= – hi ,j si ,j

i ,j

∑ − J (s i, jsi +1,j

i ,j

∑ + si ,j si ,j +1)

    

E[{s i }]= – h is i

i

∑ − J
1

2
(si si +1

i

∑ + si si −1)

    

E[{s i }]= – h is i

i

∑ − J si s i+1

i

∑

    

E[{s i }]= – h is i

i

∑ − J s is j

<ij>
∑
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(1.6.28)

If we expand this we wi ll find a constant term , terms that are linear in s and s ′
and a term that is proporti onal to ss ′. The linear terms give rise to the local fiel d
hi, and the final term is the interacti on . Th ere are other po s s i ble interacti on s
that could be wri t ten that would inclu de three or more spins. ❚

In a magnetic system, each microscopic spin is itself the source of a small mag-
netic field. Magnets have the property that they can be the source of a macroscopic
magnetic field. When a material is a source of a magnetic field, we say that it is mag-
netized. The magnetic field arises from constructive superposition of the microscopic
sources of the magnetic field that we represent as spins.In effect,the small spins com-
bine together to form a large spin. We have seen in Section 1.6.1 that when there is a
magnetic field hi, each spin will orient itself with the magnetic field. This means that
in an external field—a field due to a source outside of the magnet—there will be a
macroscopic orientation of the spins and they will in turn give rise to a magnetic field.
Magnets,however, can be the source of a magnetic field even when there is no exter-
nal field. This occurs only below a particular temperature known as the Curie tem-
perature of the material. At higher temperatures,a magnetization exists only in an ex-
ternal magnetic field. The Ising model captures this behavior by showing that the
interactions between the spins can cause a spontaneous orientation of the spins with-
out any external field. The spontaneous magnetization is a collective phenomenon. It
would not exist for an isolated spin or even for a small collection of interacting spins.

Ultimately, the reason that the spontaneous magnetization is a collective phe-
nomenon has more to do with the kinetics than the thermodynamics of the system.
The spontaneous magnetization must occur in a particular direction. Without an ex-
ternal field,there is no reason for any particular direction, but the system must choose
one. In our case,it must choose between one of two possibilities—UP or DOWN. Once
the magnetization occurs,it breaks a symmetry of the system, because we can now tell
the difference between UP and DOWN on the macroscopic scale. At this point,the ki-
netics of the system must reenter. If the system were able to flip between UP and
DOWN very rapidly, we would not be able to measure either case. However, we know
that if all of the spins have to flip at once, the likelihood of this happening becomes
vanishingly small as the number of spins grows. Thus for a large number of spins in
a macroscopic material, this flipping becomes slower than our observation of the
magnet.On the other hand,if we had only a few spins,they would still flip back and
forth. It is this property of the system that makes the spontaneous magnetization a
collective phenomenon.

Returning briefly to the discussion at the end of Section 1.3,we see that by choos-
ing a direction for the magnetization,the magnet breaks the ergodic theorem. It is no
longer possible to represent the system using an ensemble with all possible states of

    

e(s , ′ s ) = e(1,1)
(1+ s)(1+ ′ s )

4
+ e(1,−1)

(1+s)(1− ′ s )

4

+e(1,−1)
(1− s)(1+ ′ s )

4
+ e(−1, −1)

(1−s)(1− ′ s )

4
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the system. We must exclude half of the states that have the opposite magnetization.
The reason, as we described there, is because of the existence of a slow process, or a
long time scale, that prevents the system from going from one choice of magnetiza-
tion to the other.

The ex i s ten ce of a spon t a n eous magn eti z a ti on arises because of the en er gy lower-
ing of the sys tem wh en nei gh boring spins align with each other. At su f f i c i en t ly low
tem pera tu re s , this causes the sys tem to align co ll ectively one way or another. Above the
Cu rie tem pera tu re , Tc , the en er gy gain by align m ent is de s troyed by the tem pera tu re -
i n du ced ra n dom flipping of i n d ivi dual spins.We say that the high er tem pera tu re ph a s e
is a disordered ph a s e , as com p a red to the ordered low tem pera tu re ph a s e , wh ere all
spins are align ed . Wh en we think abo ut this therm ody n a m i c a lly, the disorder is an 
ef fect of optimizing the en tropy, wh i ch prom o tes the disordered state and com pete s
with the en er gy as the tem pera tu re is incre a s ed .

1.6.3 Mean field theory
Despite the simplicity of the Ising model, it has never been solved exactly except in
one dimension, and in two dimensions for hi = 0. The techniques that are useful in
these cases do not generalize well. We will emphasize instead a powerful approxima-
tion technique for describing systems of many interacting parts known as the mean
field approximation. The idea of this approximation is to treat a single element of the
system under the average influence of the rest of the system. The key to doing this cor-
rectly is to recognize that this average must be performed self-consistently. The mean-
ing of self-consistency will be described shortly. The mean field approximation can-
not be applied to all interacting systems. However, when it can be, it enables the
system to be understood in a direct way.

To use the mean field approximation we single out a particular spin si and find
the effective field (or mean field) it experiences hi′. This field is obtained by replacing
all variables in the energy by their average values, except for si. This leads to an effec-
tive energy EMF(si) for si. To obtain it we can neglect all terms in the energy (Eq.
(1.6.23)) that do not include si.

(1.6.29)

The sum is over all nearest neighbors of si. If we are able to find what the mean field
hi′ is, then we can solve this interacting Ising model using the solution of the Ising
model without interactions. The problem is that in order to find the field we have to
know the average value of the spins,which in turn depends on the effective fields. This
is the self-consistency. We will develop a single algebraic equation for the solution. It
is interesting first to consider this problem when the external fields hi are zero. Eq.
(1.6.29) shows that a mean field might still exist.When the external field is zero, each
of the spin variables has the same equation. We might guess that the average value of
the spin in one location will be the same as that in any other location:

    

EMF (s i ) = –his i − J si < s j >
jnn
∑ = – ′ h is i

′ h i = hi + J < s j >
jnn
∑
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m = mi = < si > (1.6.30)

In this case our equations become

where z is the number of nearest neighbors,known as the coordination number of the
system. Eq.(1.6.10) gives us the value of the average magnetization when the spin is
subject to a field.Using this same expression under the influence of the mean field we
have

m = tanh( hi′) = tanh( zJm) (1.6.32)

This is the self-consistent equation, which g ives the value of the magnetization in
terms of itself. The solution of this equation may be found graphically, as illustrated
in Fig. 1.6.3, by plotting the functions y = m and y = tanh( zJm) and finding their in-
tersections. There is always a solution m = 0. In addition, for values of zJ > 1, there
are two more solutions related by a change of sign m = ±m0( zJ), where we name the
positive solution m0( zJ). When zJ = 1, the line y = m is tangent to the plot o f y =
tanh( zJm) at m = 0. For values zJ > 1,the value of y = tanh( zJm) must rise above
the line y = m for small positive m and then cross it. The crossing point is the solution
m0( zJ). m0( zJ) approaches one asymptotically as zJ → ∞, e. g. as the temperature
goes to zero. A plot of m0( zJ) from a numerical solution of Eq. (1.6.32) is shown in
Fig. 1.6.4.

We see that there are two different regimes for this model with a transition at a
temperature Tc given by zJ = 1 or

kTc = zJ (1.6.33)

To understand what is happening it is helpful to look at the energy U(m) and the free
energy F(m) as a function of the magnetization,assuming that all spins have the same
magnetization. We will treat the magnetization as a parameter that can be varied. The
actual magnetization is determined by minimizing the free energy.

To determine the energy, we must average Eq.(1.6.23), which includes a product
of spins on neighboring sites. The mean field approximation treats each spin as if it
were independent of other spins except for their average field. This implies that we
have neglected correlations between the value of one spin and the others around it.
Assuming that the spins are uncorrelated means the average over the product over two
spins may be approximated by the product over the averages:

<sisj > ≈ <si><sj> = m2 (1.6.34)

The average over the energy without any external fields is then:

(1.6.35)
    

U(m) = < −J s is j
<ij>
∑ > = −

1

2
NJzm2
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The factor of 1/2 arises because we count each interaction only once (see Eqs.
(1.6.24)–(1.6.27)). A sum over the average of EMF(si) would give twice as much, due
to counting each of the interactions twice.

Since we have fixed the magnetization of all spins to be the same, we can use the
entropy we found in Question 1.6.1 to obtain the free energy as:

(1.6.36)

This free en er gy is plotted in Fig. 1.6.5 as a functi on of m/J z for va rious va lues of
k T/J z. We see that the beh avi or of this sys tem is prec i s ely the beh avi or of a secon d -
order phase tra n s i ti on de s c ri bed in Secti on 1.3. Above the tra n s i ti on tem pera tu re
Tc t h ere is on ly one po s s i ble phase and bel ow Tc t h ere are two phases of equal en-

    

F(m) = −
1

2
NJzm2 − NkT ln(2) −

1

2
(1 + m)ln 1+m( ) +(1− m)ln 1− m( )( ) 

 
 

 

 
 

156 I n t r o duc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 156
Title: Dynamics Complex Systems Short / Normal / Long

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4

tanh( zJm)m

m

zJ=2

zJ=1
zJ=0.5

Solution of
m=tanh( zJm)

F i g u re 1.6.3 G ra p h ical solution of Eq. (1.6.32) m = tanh( z J m) by plotting both the left-
a nd rig ht - h a nd sides of the equa t ion as a func t ion of m a nd looking for the int e r s e c t io ns.
m = 0 is always a solution. To cons ider other possible solutio ns we note that both func-
t io ns are ant i s y m me t r ic in m so we need only cons ider positive values of m. For every pos-
itive solution the re is a negative solution of equal ma g n i t ude. When z J = 1 the slope of
both sides of the equa t ion is the same at m = 0. For z J > 1 the slope of the rig ht is gre a t e r
than the left side. For large positive values of m t he rig ht side of the equa t ion is always
less than the left side. Thus for z J > 1, the re must be an add i t io nal solution. The solu-
t ion is plotted in Fig. 1.6.4. ❚
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er gy. Q u e s ti on 1.6.3 cl a rifies a technical point in this deriva ti on , and Questi on 1.6.4
gen era l i zes the soluti on to inclu de non zero magn etic fields hi ≠ 0.

Question 1.6.3 Show that the minima of the free energy are the solu-
tions of Eq.(1.6.32). This shows that our derivation is internally consis-

tent. Specifically, that our two ways of defining the mean field approxima-
tion, first using Eq. (1.6.29) and then using Eq. (1.6.34), are compatible.

Solution 1.6.3 Taking the derivative of Eq. (1.6.35) with respect to m and
setting it to zero gives:

(1.6.37)

Recognizing the inverse of tanh,as in Eq.(1.6.14), gives back Eq.(1.6.32) as
desired. ❚

Question 1.6.4 Find the replacements for Eq. (1.6.31)–(1.6.36) for the
case where there is a uniform external magnetic field hi = h. Plot the free

energy for a few cases.

    

0 = −Jzm −kT −
1

2
ln 1+m( )− ln 1−m( )( ) 

 
 

 

 
 
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Figure 1.6.4 The mean field approximation solution of the Ising model gives the magneti-
zation (average value of the spin) as a solution of Eq. (1.6.32). The solution is shown as a
function of zJ. As discussed in Fig. 1.6.3 and the text for  zJ > 1 there are three solutions.
Only the positive one is shown. The solution m = 0 is unstable, as can be seen by analysis of
the free energy shown in Fig. 1.6.5. The other solution is the negative of that shown. ❚

01adBARYAM_29412  3/10/02 10:16 AM  Page 157



# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 158
Title: Dynamics Complex Systems Short / Normal / Long

-0.8

-0.7

-0.6

-0.5
-1 -0.5 0 0.5 1

-0.8

-0.7

-0.6

-0.5
-1 -0.5 0 0.5 1

-0.7

-0.6

-0.5
-1 -0.5 0 0.5 1

(a)

(b)

(c)

h=0

kT=0.8

kT=0.9

kT=1.0

kT=1.1

h=0.1

kT=0.8

kT=0.9

kT=1.0

kT=1.1

kT=0.8

h=0.1

h=0.05

h=0

h=–0.05

01adBARYAM_29412  3/10/02 10:16 AM  Page 158



Solution 1.6.4 Applying an external magnetic field breaks the symmetry
between the two different minima in the energy that we have found. In this
case we have instead of Eq. (1.6.29)

EMF(si) = –hi′si

hi ′ = h + zJm
(1.6.38)

The self-consistent equation instead of Eq. (1.6.32) is:

m = tanh( h + zJm) (1.6.39)

Averaging over the energy gives:

(1.6.40)

The entropy is unchanged, so the free energy becomes:

(1.6.41)

Several plots are shown in Fig. 1 . 6 . 5 . Above k Tc of Eq . (1.6.33) the app l i c a ti on
of an ex ternal magn etic field gives rise to a magn eti z a ti on by shifting the lo-
c a ti on of the single minimu m . Bel ow this tem pera tu re there is a ti l ting of t h e
t wo minima. Thu s , going from a po s i tive to a nega tive va lue of h would give
an abru pt tra n s i ti on—a firs t - order tra n s i ti on wh i ch occ u rs at ex act ly h = 0 . ❚

In discussing the mean field equations, we have assumed that we could specify
the magnetization as a parameter to be optimized. However, the prescription we have
from thermodynamics is that we should take all possible states of the system with a
Boltzmann probability. What is the justification for limiting ourselves to only one
value of the magnetization? We can argue that in a macroscopic system, the optimal

    

F(m) = −Nhm −
1

2
NJzm 2 − NkT ln(2) −

1

2
(1+ m)ln 1+ m( ) +(1− m)ln 1−m( )( ) 

 
 

 

 
 

    

U(m) = < −h s i
i

∑ − J s is j
<ij>
∑ > =−Nhm −

1

2
NJzm 2
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F i g u re 1.6.5 Plots of the mean field approx i ma t ion to the free ene rg y. (a) shows the free en-
e rgy for h = 0 as a func t ion of m for various values of k T. The free ene rgy m a nd k T a re me a-
s u red in units of J z. As the tempera t u re is lowered below k T/z J = 1 the re are two minima in-
stead of one (shown by arrows). These minima are the solutio ns of Eq. (1.6.32) (see Questio n
1.6.3). The solutio ns are illustrated in Fig. 1.6.4. (b) Shows the same curves as (a) but with a
ma g ne t ic field h/z J = 0.1. The location of the minimum gives the value of the ma g ne t i z a t io n .
T he ma g ne t ic field causes a ma g ne t i z a t ion to exist at all tempera t u re s, but it is larger at lower
t e m p e ra t u re s. At the lowest tempera t u re shown k T/z J = 0.8 the effect of the phase tra ns i t io n
can be seen in the beginnings of a second (metastable) minimum at negative values of the ma g-
ne t i z a t ion. (c) shows plots at a fixed tempera t u re of k T/z J = 0.8 for differe nt values of the ma g-
ne t ic fie l d. As the value of the field goes from positive to ne g a t i v e, the minimum of the fre e
e ne rgy switches from positive to negative values discont i nuo u s l y. At exactly h = 0 the re is a dis-
c o nt i nuous jump from positive to negative ma g ne t i z a t ion—a first-order phase tra ns i t io n . ❚
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value of the magnetization will so dominate other magnetizations that any other pos-
sibility is negligible. This is reasonable except for the case when the magnetic field is
close to zero, below Tc , and we have two equally likely magnetizations. In this case,the
usual justification does not hold, though it is often implicitly applied.A more com-
plete justification requires a discussion of kinetics given in Section 1.6.6.

Using the results of Question 1.6.4, we can draw a phase diagram like that illus-
trated in Section 1.3 for water (Fig. 1.3.7). The phase diagram of the Ising model (Fig.
1.6.6) describes the transitions as a function of temperature (or ) and magnetic field
h. It is very simple for the case of the magnetic system,since the first-order phase tran-
sition line lies along the h = 0 axis and ends at the second-order transition point given
by Eq. (1.6.33).

1.6.4 Antiferromagnets
We found the existence of a phase transition in the last section from the self-consistent
mean field result (Eq. (1.6.32)), which showed that there was a nonzero magnetiza-
tion for zJ > 1. This condition is satisfied for small enough temperature as long as
J > 0. What about the case of J < 0? There are no additional solutions of Eq.(1.6.32)
for this case. Does this mean there is no phase transition? Actually, it means that one
of our assumptions is not a good one. When J < 0,each spin would like (has a lower
energy if…) its neighbors to antialign rather than align their spins. However, we have
assumed that all spins have the same magnetization, Eq. (1.6.30). The self-consistent
equation assumes and does not guarantee that all spins have the same magnetization.
This assumption is not a good one when the spins are trying to antialign.
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kT

kTc=zJ

first order transition

h
Figure 1.6.6 The phase
diagram of the Ising
model found from the
mean field approxima-
tion. The line of first-or-
der phase transitions at
h = 0 ends at the sec-
ond-order phase transi-
tion point given by
Eq. (1.6.32). For posi-
tive values of h there is
a net positive magneti-
zation and for negative
values there is a nega-
tive magnetization. The
change through h = 0 is
continuous above the
second-order transition
point, and discontinu-
ous below it. ❚
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(0,0) (1,0)

(1,1)(1,0)

(-1,0)

(-1,-1) (0,-1) (1,-1)

(-1,1)

Figure 1.6.7 In order
to obtain mean field
equations for the anti-
ferromagnetic case J <
0 we consider a square
lattice (top) and label
every site according to
the sum of its rectilin-
ear indices as odd
(open circles) or even
(filled circles). A few
sites are shown with in-
dices. Each site is un-
derstood to be the loca-
tion of a spin. We then
invert the spins (rede-
fine them by s → −s)
that are on odd sites
and find that the new
system satisfies the
same equations as the
ferromagnet. The same
trick works for any bi-
partite lattice; for ex-
ample the hexagonal
lattice shown (bottom).
By using this trick we
learn that at low tem-
peratures the system
will have a spontaneous
magnetism that is posi-
tive on odd sites and
negative on even sites
or the opposite. ❚
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We can solve the case of a sys tem with J < 0 on a squ a re or cubic latti ce direct ly us-
ing a tri ck . We label every spin by indices (i , j) in 2-d, as indicated in Fig. 1 . 6 . 7 , or (i , j, k)
in 3-d. Th en we con s i der sep a ra tely the spins whose indices sum to an odd nu m ber
( “odd spins”) and those whose indices sum to an even nu m ber (“even spins” ) . No te
that all the nei gh bors of an odd spin are even and all nei gh bors of an even spin are od d .
Now we invert all of the odd spins. Ex p l i c i t ly we define new spin va ri a bles in 3-d as

s ′ijk = (−1)i +j+ksijk
(1.6.42)

In terms of these new spins,the energy without an external magnetic field is the same
as before, except that each term in the sum has a single additional factor of (–1). There
is only one factor of (−1) because every nearest neighbor pair has one odd and one
even spin. Thus:

(1.6.43)

We have com p l eted the tra n s form a ti on by defining a new interacti on J ′ = –J > 0. In
terms of the new va ri a bl e s , we are back to the ferrom a gn et . The soluti on is the
s a m e , and bel ow the tem pera tu re given by k Tc = zJ ′ t h ere wi ll be a spon t a n eo u s
m a gn eti z a ti on of the new spin va ri a bl e s . What happens in terms of the ori gi n a l
va ri a bles? Th ey become anti a l i gn ed . All of the even spins have magn eti z a ti on in
one directi on , U P, and the odd spins have magn eti z a ti on in the oppo s i te directi on ,
DOW N, or vi ce vers a . This lowers the en er gy of the sys tem , because the nega tive in-
teracti on J < 0 means that all of the nei gh boring spins want to anti a l i gn . This is
c a ll ed an anti ferrom a gn et .

The trick we have used to solve the antif erromagnet works for certain kinds of
periodic arrangements of spins called bipartite lattices. A bipartite lattice can be di-
vided into two lattices so that all the nearest neighbors of a member of one lattice are
members of the other lattice. This is exactly what we need in order for our redefini-
tion of the spin variables to work. Many lattices are bipartite,including the cubic lat-
tice and the hexagonal honeycomb lattice illustrated in Fig. 1.6.7. However, the trian-
gular lattice, illustrated in Fig. 1.6.8, is not.

The t riangular lattice exemplifies an important concept in interacting systems
known as frustration. Consider what happens when we try to assign magnetizations
to each of the spins on a triangular lattice in an effort to create a configuration with a
lower energy than a disordered system. We start at a position marked (1) on Fig. 1.6.8
and assign it a magnetization of m. Then, since it wants its neighbors to be an-
tialigned, we assign position (2) a magnetization of −m. What do we do with the spin
at (3)? It has interactions both with the spin at (1) and with the spin at (2). These in-
teractions would have it be antiparallel with both—an impossible task.We say that the
spin at (3) is frustrated,since it cannot simultaneously satisfy the conflicting demands
upon it. It should not come as a surprise that the phenomenon of frustration becomes
a commonplace occurrence in more complex systems. We might even say that frus-
tration is a source of complexity.

    

E[{ ′ s i }]= −J s is j

<ij>
∑ = −(−J) ′ s i ′ s j

<ij>
∑ = − ′ J ′ s i ′ s j

<ij>
∑
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(1) (2)

(3)

Figure 1.6.8 A triangular
lattice (top) is not a bi-
partite lattice. In this
case we cannot solve the
antiferromagnet J < 0 by
the same method as used
for the square lattice (see
Fig. 1.6.7). If we try to as-
sign magnetizations to
different sites we find
that assigning a magneti-
zation to site (1) would
lead site (2) to be an-
tialigned. This combina-
tion would, however re-
quire site (3) to be
antialigned to both sites
(1) and (2), which is im-
possible. We say that site
(3) is “frustrated.” The
bottom illustration shows
what happens when we
take the hexagonal lattice
from Fig. 1.6.7 and super-
pose the magnetizations
on the triangular lattice
leaving the additional
sites (shaded) as unmag-
netized (see Questions
1.6.5–1.6.7). ❚
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Question 1.6.5 Despite the existence of frustration, it is possible to
construct a state with lower energy than a completely disordered state

on the triangular lattice. Construct one of them and evaluate its free
energy.

Solution 1.6.5 We con s tru ct the state by ex tending the process discussed in
the text for assigning magn eti z a ti ons to indivi dual site s . We start by assigning a
m a gn eti z a ti on m to site (1) in Fig. 1.6.8 and −m to site (2). Because site (3) is
f ru s tra ted , we assign it no magn eti z a ti on . We con ti nue by assigning magn eti z a-
ti ons to any site that alre ady has two nei gh bors that are assign ed magn eti z a-
ti on s . We assign a magn eti z a ti on of m wh en the nei gh bors are −m and 0, a
m a gn eti z a ti on of −m wh en the nei gh bors are m and 0 and a magn eti z a ti on of
0 wh en the nei gh bors are m and −m. This gives the illu s tra ti on at the bo t tom of
F i g. 1 . 6 . 8 . Com p a ring with Fig. 1 . 6 . 7 , we see that the magn eti zed sites corre-
s pond to the hon eycomb latti ce . O n e - t h i rd of the triangular latti ce sites have a
m a gn eti z a ti on of +m, −m and 0. E ach magn eti zed site has three nei gh bors of
the oppo s i te magn eti z a ti on and three unmagn eti zed site s . The free en er gy of
this state is given by:

(1.6.44)

The first term is the energy. Each nearest neighbor pair of spins that are an-
tialigned provides an energy Jm2. Let us call this a bond between two spins.
There are a total of three interactions for every spin (each spin interacts with
six other spins but we can count each interaction only once). However, on
average there is only one out of three interactions that is a bond in this sys-
tem. To count the bonds, note that one out of three spins (with mi = 0) has
no bonds, while the other two out of three spins each have three bonds. This
gives a total of six bonds for three sites, but each bond must be counted only
once for a pair of interacting spins. We divide by two to get three bonds for
three spins, or an average of one bond per site. The second term in Eq.
(1.6.44) is the entropy of the N / 3 unmagnetized sites,and the third term is
the entropy of the 2N / 3 magnetized sites.

Th ere is another way to sys tem a ti c a lly con s tru ct a state with an en er gy
l ower than a com p l etely disordered state . As s i gn magn eti z a ti on s +m a n d −m
a l tern a tely along one stra i ght line—a on e - d i m en s i onal anti ferrom a gn et .
Th en skip both nei gh boring lines by set ting all of t h eir magn eti z a ti ons to
zero. Th en repeat the anti ferrom a gn etic line on the next para ll el line. Th i s
con f i g u ra ti on of a l tern a ting anti ferrom a gn etic lines is also lower in en er gy
than the disordered state , but it is high er in en er gy than the con f i g u ra ti on
s h own in Fig. 1.6.8 at low en o u gh tem pera tu re s , as discussed in the nex t
qu e s ti on . ❚

    

F(m) = NJm2 − 1

3
NkT ln(2)

− 2

3
NkT ln(2)− 1

2
(1 +m)ln 1+m( )+ (1− m)ln 1− m( )( ) 

 
 

 

 
 
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Question 1.6.6 Show that the state illustrated on the bottom of Fig. 1.6.8
has the lowest possible free energy as the temperature goes to zero, at

least in the mean field approximation.

Solution 1.6.6 As the temperature goes to zero, the entropic contribution
to the free energy is ir relevant. The energy of the Ising model is minimized
in the mean field approximation when the magnetization is +1 if the local
effective field is positive, or –1 ifit is negative. The magnetization is arbitrary
if the effective field is zero. If we consider three spins arranged in a triangle,
the lowest possible energy of the three interactions between them is given by
having one with m = +1, one with m = –1 and the other arbitrary. This is
forced, because we must have at least one +1 and one –1 and then the other
is arbitrary. This is the optimal energy for any triangle of interactions. The
configuration of Fig. 1.6.8 achieves this optimal arrangement for all triangles
and therefore must give the lowest possible energy of any state. ❚

Question 1.6.7 In the case of the ferromagnet and the antiferromagnet,
we found that there were two different states of the system with the same

energy at low temperatures. How many states are there of the kind shown in
Fig. 1.6.8 and described in Questions 1.6.5 and 1.6.6?

Solution 1.6.7 There are two ways to count the states. The first is to count
the number of distinct magnetization structures. This counting is as follows.
Once we assign the values of the magnetization on a single triangle, we have
determined them everywhere in the system. This follows by inspection or by
induction on the size of the assigned triangle. Since we can assign arbitrar-
ily the three different magnetizations (m, −m,0) within a triangle, there are
a total of six such distinct magnetization structures.

We can also count how many disti n ct arra n gem ents of spins there are .
This is rel evant at low tem pera tu res wh en we want to know the po s s i ble state s
at the lowest en er gy. We see that there are 2N/ 3 a rra n gem ents of the arbi tra ry
spins for each of the magn eti z a ti on s . If we want to count all of the state s , we
can almost mu l ti p ly this nu m ber by 6. We have to correct this sligh t ly bec a u s e
of s t a tes wh ere the arbi tra ry spins are all align ed U P or DOW N. Th ere are two
of these for each arra n gem ent of the magn eti z a ti on s , and these wi ll be
co u n ted twi ce . Making this correcti on gives 6(2N/ 3 − 1) state s . We see that
f ru s tra ti on gives rise to a large nu m ber of l owest en er gy state s .

We have not yet proven that these are the on ly states with the lowest en er gy.
This fo ll ows from the requ i rem ent that every tri a n gle must have its lowest po s-
s i ble en er gy, and the ob s erva ti on that set ting the va lue of the magn eti z a ti ons of
one tri a n gle then forces the va lues of a ll other magn eti z a ti ons uniqu ely. ❚

Question 1.6.8 We discovered that our assumption that all spins should
have the same magnetization does not always apply. How do we know

that we found the lowest energy in the case of the ferromagnet? Answer this
for the case of h = 0 and T = 0.
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Solution 1.6.8 To minimize the energy, we can consider each term of the
energy, which is just the product of spins on adjacent sites. The minimum
possible value for each term of a ferromagnet occurs for aligned spins. The
two states we found at T = 0 with mi = 1 and mi = –1 are the only possible
states with all spins aligned. Since they give the minimum possible energy,
they must be the correct states. ❚

1.6.5 Beyond mean field theory (correlations)
Mean field theory treats only the average orientation of each spin and assumes that
spins are uncorrelated. This implies that when one spin changes its sign, the other
spins do not respond. Since the spins are interacting, this must not be true in a more
complete treatment. We expect that even above Tc , nearby spins align to ea ch other.
Below Tc , nearby spins should be more aligned than would be suggested by the aver-
age magnetization. Alignment of spins implies their values are correlated. How do we
quantify the concept of correlation? When two spins are correlated they are more
likely to have the same value. So we might define the correlation of two spins as the
average of the product of the spins:

(1.6.45)

According to this definition, they are correlated if they are both always +1, so that
Psisj

(1,1) = 1. Then < sisj > achieves its maximum possible value +1. The problem with
this definition is that when si and sj are both always +1 they are completely indepen-
dent of each other, because each one is +1 independently of the other. Our concept of
correlation is the opposite of independence. We know that if spins are independent,
then their joint probability distribution factors (see Section 1.2)

P(si ,sj) = P(si)P(sj) (1.6.46)

Thus we define the correlation as a measure of the departure of the joint probability
from the product of the individual probabilities.

(1.6.47)

This definition means that when the correlation is zero, we can say that si and sj are in-
dependent. However, we must be careful not to assume that they are not aligned with
each other. Eq. (1.6.45) measures the spin alignment.

Question 1.6.9 One way to think about the difference between Eq.
(1.6.45) and Eq. (1.6.47) is by considering a hierarchy of correlations.

The first kind of correlation is of individual spins with themselves and is just
the average of the spin. The second kind are correlations between pairs of
spins that are not contained in the first kind. Define the next kind of corre-
lation in the hierarchy that would describe correlations between three spins
but exclude the correlations that appear in the first two.

    

sis j (P(s i ,s j ) − P(s i )P(s j )) = < si s j > − < si >< s j >
s i ,s j

∑

    

< s is j > = s is j P(s i ,s j )
s i ,s j

∑ = Ps is j
(1,1) + Psi s j

(−1, −1) − Ps i sj (−1,1)− Ps i s j
(1,−1)
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Solution 1.6.9 The first three elements in the hierarchy of correlations are:

< si >
< sisj > − < si > < sj > (1.6.48)

< sisjsk> − < sisj > < sk > − < sisk > < sj > − < sjsk > < si > +2 < si > < sj > < sk >

The expression for the correlation of three spins can be checked by seeing
what happens if the variables are independent. When variables are indepen-
dent, the average of their product is the same as the product of their aver-
ages. Then all averages become products of averages of single variables and
everything cancels. Similarly, if the first two variables si and sj are correlated
and the last one sk is independent of them,then the first two terms cancel and
the last three terms also cancel. Thus, this expression measures the correla-
tions of three variables that are not present in any two of them. ❚

Question 1.6.10 To see the difference between Eqs. (1.6.45) and
(1.6.47), evaluate them for two cases: (a) si is always equal to 1 and sj is

always equal to –1,and (b) si is always the opposite of sj but each of them av-
erages to zero (i.e., is equally likely to be +1 or –1).

Solution 1.6.10

a. Psisj
(1,−1) = 1, so < sisj > = −1, but < sisj > − < si > < sj > = 0.

b. < sisj > = −1, and < sisj > − < si > < sj > = −1. ❚

Comparing Eq. (1.6.34) with Eq. (1.6.47), we see that correlations measure the
departure of the system from mean field theory. When there is an average magnetiza-
tion, such as there is below Tc in a ferromagnet, the effect of the average magnetiza-
tion is removed by our definition of the correlation. This can also be seen from rewrit-
ing the expression for correlations as:

< sisj > − < si > < sj > = < (si − < si > ) (sj − < sj >) > (1.6.49)

Correlations measure the behavior of the difference between the spin and its average
value. In the rest of this section we discuss qualitatively the correlations that are found
in a ferromagnet and the breakdown of the mean field approximation.

The en er gy of a ferrom a gn et is determ i n ed by the align m ent of n ei gh bori n g
s p i n s . Po s i tive correl a ti ons bet ween nei gh boring spins redu ce its en er gy. Po s i tive
or nega tive correl a ti ons diminish the po s s i ble con f i g u ra ti ons of spins and there-
fore redu ce the en tropy. At very high tem pera tu re s , the com peti ti on bet ween the
en er gy and the en tropy is dom i n a ted by the en tropy, so there should be no corre-
l a ti ons and each spin is indepen den t . At low tem pera tu re s , well bel ow the tra n s i-
ti on tem pera tu re , the avera ge va lue of the spins is close to on e . For ex a m p l e , for

z J = 2 , wh i ch corre s ponds to T = Tc / 2, the va lue of m0( z J) is 0.96 (see Fig.
1 . 6 . 4 ) . So the correl a ti ons given by Eq . (1.6.47) play almost no ro l e . Correl a ti on s
a re most significant near Tc , so it is near the tra n s i ti on that the mean field ap-
prox i m a ti on is least va l i d .
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For all T > Tc and for h = 0, the magnetization is zero. However, starting from
high temperature, the correlation between neighboring spins increases as the tem-
perature is lowered. Moreover, the correlation of one spin with its neighbors,and their
correlation with their neighbors,induces a correlation of each spin with spins farther
away. The distance over which spins are correlated increases as the temperature de-
creases. The correlation decays exponentially, so a correlation length (T) may be de-
fined as the decay constant of the correlation:

< sisj > − < si > < sj > ∝ e −rij / (T ) (1.6.50)

where rij is the Euclidean distance between si and sj. At Tc the correlation length di-
verges. This is one way to think about how the phase transition occurs. The divergence
of the correlation length implies that two spins anywhere in the system become cor-
related. As mentioned previously, in order for the instantaneous magnetization to be
measured, there must also be a divergence of the relaxation time between opposite
values of the magnetization. This will be discussed in Sections 1.6.6 and 1.6.7.

For tem pera tu res just bel ow Tc , the avera ge magn eti z a ti on is small . The corre-
l a ti on length of the spins is large . The avera ge align m ent (Eq . (1.6.45)) is essen ti a lly
the same as the correl a ti on (Eq . ( 1 . 6 . 4 7 ) ) . However, as T is furt h er redu ced bel ow
Tc , the avera ge magn eti z a ti on grows prec i p i to u s ly and the correl a ti on measu res the
d i f feren ce bet ween the spin-spin align m ent and the avera ge spin va lu e . Both the
correl a ti on and the correl a ti on length dec rease aw ay from Tc . As the tem pera tu re
goes to zero, the correl a ti on length also goes to zero, even as the correl a ti on itsel f
va n i s h e s .

At T = Tc t h ere is a special circ u m s t a n ce wh ere the correl a ti on length is infinite .
This does not mean that the correl a ti on is unch a n ged as a functi on of the distance be-
t ween spins, rij. Si n ce the magn eti z a ti on is zero, the correl a ti on is the same as the spin
a l i gn m en t . If the align m ent did not dec ay with distance , the magn eti z a ti on would be
u n i ty, wh i ch is not correct . The infinite correl a ti on length corre s ponds to power law
ra t h er than ex pon en tial dec ay of the correl a ti on s .A power law dec ay of the correl a ti on s
is more gradual than ex pon en tial and implies that there is no ch a racteri s tic size for the
correl a ti on s : we can find correl a ted regi ons of spins that are of a ny size . Si n ce the cor-
rel a ted regi ons flu ctu a te , we say that there are flu ctu a ti ons on every length scale.

The existence of correlations on every length scale near the phase transition and
the breakdown of the mean field approximation that neglects these correlations
played an important role in the development of the theory of phase transitions. The
discrepancy between mean field predictions and experiment was one of the great un-
solved problems of statistical physics. The development of renormalization tech-
niques that directly consider the behavior of the system on different length scales
solved this problem. This will be discussed in greater detail in Section 1.10.

In Section 1.3 we discussed the nature of ensemble averages and indicated that
one of the central issues was determining the size of an independent system. For the
Ising model and other systems that are spatial ly uniform, it is the correlation length
that determines the size of an independent system. If a physical system is much larger
than a correlation length then the system is self-averaging, in that experimental mea-
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surements average over many independent samples.We see that far from a phase tran-
sition,uniform systems are generally self-averaging;near a phase transition,the phys-
ical size of a system may enter in a more essential way.

The mean field approx i m a ti on is su f f i c i ent to captu re the co ll ective beh avi or of t h e
Ising model . However, even Tc is not given correct ly by mean field theory, and indeed it
is difficult to calculate . The actual tra n s i ti on tem pera tu re differs from the mean fiel d
va lue by a factor that depends on the dimen s i on a l i ty and stru ctu re of the latti ce . In 1-d ,
the failu re of mean field theory is most severe ,s i n ce there is actu a lly no real tra n s i ti on .
Ma gn eti z a ti on does not occ u r, except in the limit of T → 0 . The re a s on that there is no
m a gn eti z a ti on in 1-d, is that there is alw ays a finite prob a bi l i ty that at some point alon g
the chain there wi ll be a swi tch from having spins DOW N to having spins U P. This is
true no matter how low the tem pera tu re is. The prob a bi l i ty of su ch a bo u n d a ry
bet ween U P a n d DOW N spins dec reases ex pon en ti a lly with the tem pera tu re . It is given
by 1/( 1 + e2J /k T) ≈ e −2J /k T at low tem pera tu re . Even one su ch bo u n d a ry de s troys the
avera ge magn eti z a ti on for an arbi tra ri ly large sys tem . While form a lly there is no ph a s e
tra n s i ti on in one dimen s i on , u n der some circ u m s t a n ces the ex pon en ti a lly growi n g
d i s t a n ce bet ween bo u n d a ries may have con s equ en ces like a phase tra n s i ti on . The ef fect
i s ,h owever, mu ch more gradual than the actual phase tra n s i ti ons in 2-d and 3-d.

The mean field approximation improves as the dimensionality increases. This is
a consequence of the increase in the number of neighbors. As the number of neigh-
bors increases,the averaging used for determining the mean field becomes more reli-
able as a measure of the environment of the spin. This is an important point that de-
serves some thought. As the number of different influences on a particular variable
increases, they become better represented as an average influence. Thus in 3-d, the
mean field approximation is better than in 2-d. Moreover, it turns out that rather than
just gradually improving as the number of dimensions increases, for 4-d the mean
field approximation becomes essentially exact for many of the properties of impor-
tance in phase transitions. This happens because correlations become irrelevant on
long length scales in more than 4-d. The number of effective neighbors of a spin also
increases if we increase the range of the interactions. Several different models with
long-range interactions are discussed in the following section.

The Ising model has no built-in dynamics;however, we often discuss fluctuations
in this model. The simplest fluctuation would be a single spin flipping in time. Unless
the average value of a spin is +1 or –1,a spin must spend some time in each state. We
can see that the presence of correlations implies that there must be fluctuations in time
that affect more than one spin. This is easiest to see if we consider a system above the
transition, where the average magnetization is zero. When one spin has the value +1,
then the average magnetization of spins around it will be positive. On average,a re-
gion of spins will tend to flip together from one sign to the other. The amount of time
that the region takes to flip depends on the length of the correlations. We have defined
correlations in space between two spins. We could generalize the definition in Eq.
(1.6.47) to allow the indices i and j to refer to different times as well as spatial posi-
tions. This would tell us about the fluctuations over time in the system. The analog of
the correlation length Eq.(1.6.50) would be the relaxation time (Eq.(1.6.69) below).
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The Ising model is useful for describing a large variety of systems;however, there
are many other statistical models using more complex variables and interactions that
have been used to represent various physical systems. In general, these models are
treated first using the mean field approximation. For each model,there is a lower di-
mension (the lower critical dimension) below which the mean field results are com-
pletely invalid. There is also an upper critical dimension, where mean field is exact.
These dimensions are not necessarily the same as for the Ising model.

1.6.6 Long-range interactions and the spin glass
Long-range interactions enable the Ising model to serve as a model of systems that are
much more complex than might be expected from the magnetic analog that moti-
vated its original int roduction. If we just consider ferromagnetic interactions sepa-
rately, the model with long-range interactions actually behaves more simply. If we just
consider antiferromagnetic interactions, larger scale patterns of UP and DOWN spins
arise. When we include both negative and positive interactions together, there will be
additional features that enable a richer behavior. We will start by considering the case
of ferromagnetic long-range interactions.

The primary effect of the increase in the range of ferromagnetic interactions is
improvement of the mean field approximation. There are several ways to model in-
teractions that extend beyond nearest neighbors in the Ising model. We could set a
sphere of a particular radius r0 around each spin and consider all of the spins within
the sphere to be neighbors of the spin at the center.

(1.6.51)

Here we do not restrict the summations over i and j in the second term,so we explic-
itly include a factor of 1/2 to avoid counting interactions twice.Alternatively, we could
use an interaction J(rij) that decays either exponentially or as a power law with dis-
tance from each spin:

(1.6.52)

In both Eqs. (1.6.51) and (1.6.52) the self-interaction terms i = j are generally to be
excluded. Since si

2 = 1 they only add a constant to the energy.
Q u i te gen era lly and indepen dent of the ra n ge or even the va ri a bi l i ty of i n terac-

ti on s , wh en all interacti ons are ferrom a gn eti c , J > 0, t h en all the spins wi ll align at low
tem pera tu re s . The mean field approx i m a ti on may be used to esti m a te the beh avi or. All
cases then redu ce to the same free en er gy (Eq . (1.6.36) or Eq . (1.6.41)) with a measu re
of the strength of the interacti ons rep l acing z J. The on ly differen ce from the neare s t
n ei gh bor model then rel a tes to the acc u racy of the mean field approx i m a ti on . It is sim-
plest to con s i der the model of a fixed interacti on strength with a cutof f l en g t h . Th e
mean field is acc u ra te wh en the correl a ti on length is shorter than the interacti on dis-
t a n ce . Wh en this occ u rs , a spin is interacting with other spins that are uncorrel a ted
with it. The avera ging used to obtain the mean field is then correct . Thus the approx-
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i
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2
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i m a ti on improves if the interacti on bet ween spins becomes lon ger ra n ged . However,
the correl a ti on length becomes arbi tra ri ly long near the phase tra n s i ti on . Thu s , for
l on ger interacti on len g t h s , the mean field approx i m a ti on holds cl o s er to Tc but even-
tu a lly becomes inacc u ra te in a narrow tem pera tu re ra n ge around Tc .Th ere is one model
for wh i ch the mean field approx i m a ti on is ex act indepen dent of tem pera tu re or di-
m en s i on . This is a model of i n f i n i te ra n ge interacti ons discussed in Questi on 1.6.11.
The distance - depen dent interacti on model of Eq . (1.6.52) can be shown to beh ave like
a finite ra n ge interacti on model for interacti ons that dec ay more ra p i dly than 1/r in 3-
d . For we a ker dec ay than 1/r this model is essen ti a lly the same as the lon g - ra n ge in-
teracti on model of Q u e s ti on 1.6.11. In teracti ons that dec ay as 1/r a re a borderline case.

Question 1.6.11 Solve the Ising model with infinite ranged interactions
in a uniform magnetic field. The infinite range means that all spins in-

teract with the same interaction strength. In o rder to keep the energy ex-
trinsic (proportional to the volume) we must make the interactions between
pairs of spins weaker as the system becomes larger, so replace J → J /N. The
energy is given by:

(1.6.53)

For simplicity, keep the i = j terms in the second sum even though they add
only a constant.

Solution 1.6.11 We can solve this problem exactly by rewriting the energy
in terms of a collective coordinate which is the average over the spin variables

(1.6.54)

in terms of which the energy becomes:

(1.6.55)

This is the same as the mean field Eq. (1.6.39) with the substitution Jz → J.
Here the equation is exact. The result for the entropy is the same as before,
since we have fixed the average value of the spin by Eq.(1.6.54). The solution
for the value of m for h = 0 is given by Eq.(1.6.32) and Fig. 1.6.4. For h ≠ 0
the discussion in Question 1.6.4 applies. ❚

The case of antiferromagnetic interactions will be considered in greater detail in
Chapter 7. If all interactions are antiferromagnetic J < 0,then extending the range of
the interactions tends to reduce their effect, because it is impossible for neighboring
spins to be antialigned and lower the energy. To be antialigned with a neighbor is to
be aligned with a second neighbor. However, by forming patches of UP and DOWN

spins it is possible to lower the energy. In an infinite-ranged antiferromagnetic sys-
tem,all possible states with zero magnetization have the same lowest energy at h = 0.

    
E({si }) = hNm −

1

2
JNm2
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This can be seen from the energy expression in Eq.(1.6.55). In this sense,frustration
from many sources is almost the same as no interaction.

In addition to the ferromagnet and antiferromagnet, there is a third possibility
where there are both positive and negative interactions. The physical systems that
have motivated the study of such models are known as spin glasses. These are mate-
rials where magnetic atoms are found or placed in a nonmagnetic host.The randomly
placed magnetic sites interact via long-range interactions that oscillate in sign with
distance. Because of the randomness in the location of the spins, there is a random-
ness in the interactions between them. Experimentally, it is found that such systems
also undergo a transition that has been compared to a glass transition, and therefore
these systems have become known as spin glasses.

A model for these materials, known as the Sherrington-Kirkpatrick spin glass,
makes use of the Ising model with infinite-range random interactions:

(1.6.56)

Jij = ± J

The interactions Jij are fixed uncorrelated random variables—quenched variables.
The properties of this system are to be averaged over the random variables Jij but only
after it is solved.

Similar to the ferromagnetic or antiferromagnetic Ising model,at high tempera-
tures kT >> J the spin glass model has a disordered phase where spins do not feel the
effect of the interactions beyond the existence of correlations. As the temperature is
lowered,the system undergoes a transition that is easiest to describe as a breaking of
ergodicity. Because of the random interactions,some arrangements of spins are much
lower in energy than others. As with the case of the antiferromagnet on a t riangular
lattice,there are many of these low-energy states. The difference between any two of
these states is large,so that changing from one state to the other would involve the flip-
ping of a finite fraction of the spins of the system. Such a flipping would have to be
cooperative, so that overcoming the barrier between low-energy states becomes im-
possible below the transition temperature during any reasonable time. The low-
energy states have been shown to be organized into a hierarchy determined by the size
of the overlaps between them.

Question 1.6.12 Solve a model that includes a special set of correlated
random interactions of the type of the Sherrington-Kirkpatrick model,

where the interactions can be written in the separable form

Jij = i j

i = ±1
(1.6.57)

This is the Mattis model. For simplicity, keep the terms where i = j.

Solution 1.6.12 We can solve this probl em by defining a new set of va ri a bl e s

s′i = isi (1.6.58)
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In terms of these variables the energy becomes:

(1.6.59)

which is the same as the ferromagnetic Ising model. The phase transition of
this model would lead to a spontaneous magnetization of the new variables.
This corresponds to a net orientation of the spins toward (or opposite) the
state si = i. This can be seen from

m = < s′i > = i< si > (1.6.60)

This model shows that a set of mixed interactions can cause the system to
choose a particular low-energy state that behaves like the ordered state found
in the ferromagnet. By extension, this makes it plausible that fully random
interactions lead to a variety of low-energy states. ❚

The existence of a large number of randomly located energy minima in the spin
glass might suggest that by engineering such a system we could control where the
minima occur. Then we might use the spin glass as a memory. The Mattis model pro-
vides a clue to how this might be accomplished. The use of an outer product repre-
sentation for the matrix of interactions turns out to be closely related to the model
developed by Hebb for biological imprinting of memories on the brain. The engi-
neering of minima in a long-range-interaction Ising model is precisely the model de-
veloped by Hopfield for the behavior of neural networks that we will discuss in
Chapter 2.

In the ferromagnet and antiferromagnet, there were intuitive ways to deal with
the breaking of ergodicity, because we could easily define a macroscopic parameter
(the magnetization) that differentiated between different macroscopic states of the
system. More general ways to do this have been developed for the spin glass and ap-
plied to the study of neural networks.

1.6.7 Kinetics of the Ising model
We have introdu ced the Ising model wi t h o ut the ben efit of a dy n a m i c s . Th ere are many
ch oi ces of dynamics that would lead to the equ i l i brium en s em ble given by the Is i n g
m odel . One of the most natu ral would arise from con s i dering each spin to have the
t wo - s t a te sys tem dynamics of Secti on 1.4. In this dy n a m i c s , tra n s i ti ons bet ween U P a n d
DOW N occur ac ross an interm ed i a te barri er that sets the tra n s i ti on ra te . We call this the
activa ted dynamics and wi ll use it to discuss pro tein folding in Ch a pter 4 because it can
be motiva ted micro s cop i c a lly. The activa ted dynamics de s c ri bes a con ti nuous ra te of
tra n s i ti on for each of the spins. It is of ten conven i ent to con s i der tra n s i ti ons as occ u r-
ring at discrete ti m e s . A parti c u l a rly simple dynamics of this kind was introdu ced by
G l a u ber for the Ising model . It also corre s ponds to the dynamics popular in studies of
n eu ral net works that we wi ll discuss in Ch a pter 2. In this secti on we wi ll show that the
t wo different dynamics are qu i te cl o s ely rel a ted . In Secti on 1.7 we wi ll con s i der severa l
o t h er forms of dynamics wh en we discuss Mon te Ca rlo simu l a ti on s .
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If there are many different possible ways to assign a dynamics to the Ising model,
how do we know which one is correct? As for the model itself, it is necessary to con-
sider the system that is being modeled in order to determine which kinetics is appro-
priate. However, we expect that there are many different choices for the kinetics that
will provide essentially the same results as long as we consider its long time behavior.
The central limit theorem in Section 1.2 shows that in a stochastic process, many in-
dependent steps lead to the same Gaussian distribution of probabilities,independent
of the specific steps that are taken. Similarly, if we choose a dynamics for the Ising
model that allows individual spin flips, the behavior of processes that involve many
spin flips should not depend on the specific dynamics chosen. Having said this, we
emphasize that the conditions under which different dynamic rules provide the same
long time behavior are not fully established. This problem is essential ly the same as
the problem of classifying dynamic systems in general. We will discuss it in more de-
tail in Section 1.7.

Both the activated dynamics and the Glauber dynamics assume that each spin re-
laxes from its present state toward its equilibrium distribution. Relaxation of each
spin is independent of other spins. The equilibrium distribution is determined by the
relative energy of its UP and DOWN state at a particular time. The energy diff erence
between having the i th spin si UP and DOWN is:

E+i({sj}j≠i) = E(si = +1,{sj}j≠i) −E(si = –1,{sj}j≠i) (1.6.61)

The probability of the spin being UP or DOWN is given by Eq. (1.4.14) as:

(1.6.62)

Psi
(−1) = 1 − f(E+i) = f(−E+i) (1.6.63)

In the activated dynamics, all spins perform transitions at all times with rates
R(1|–1) and R(−1|1) given by Eqs.(1.4.38) and (1.4.39) with a site-dependent energy
barrier EBi that sets the relaxation time for the dynamics i. As with the two-state
system, it is assumed that each transition occurs essentially instantaneously. The
choice of the barrier EBi is quite important for the kinetics, particularly since it may
also depend on the state of other spins with which the i th spin interacts. As soon as
one of the spins makes a transition,all of the spins with which it interacts must change
their rate of relaxation accordingly. Instead of considering directly the rate of transi-
tion, we can consider the evolution of the probability using the Master equation,
Eq. (1.4.40) or (1.4.43). This would be convenient for Master equation treatments of
the whole system. However, the necessity of keeping track of all of the probabilities
makes this impractical for all but simple considerations.

Glauber dynamics is simpler in that it considers only one spin at a time. The sys-
tem is updated in equal time intervals.Each time interval is divided into N small time
increments. During each time increment, we select a particular spin and only consider
its dynamics. The selected spin then relaxes completely in the sense that its state is set
to be UP or DOWN according to its equilibrium probability, Eq. (1.6.62). The transi-
tions of different spins occur sequentially and are not otherwise coupled. The way we

    
Ps i

(1) =
1

1+ e E+i / kT
= f (E+i )
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select which spin to update is an essential part of the Glauber dynamics. The simplest
and most commonly used approach is to select a spin at random in each time incre-
ment. This means that we do not guarantee that every spin is selected during a time
interval consisting of N spin updates.Likewise,some spins will be updated more than
once in a time interval.On average,however, every spin is updated once per time in-
terval.

In order to show that the Glauber dynamics are intimately related to the activated
dynamics, we begin by considering how we would implement the activated dynamics
on an ensemble of independent two-state systems whose dynamics are completely de-
termined by the relaxation time = (R(1|–1) + R(1|–1))−1 (Eq.(1.4.44)). We can think
about this ensemble as representing the dynamics of a single two-state system, or, in
a sense that will become clear, as representing a noninteracting Ising model. The to-
tal number of spins in our ensemble is N. At time t the ensemble is described by the
number of UP spins given by NP(1;t) and the number of DOWN spins NP(−1;t).

We describe the a ctivated dynamics of the ensemble using a small time interval
∆t, which eventually we would like to make as small as possible. During the interval
of time ∆t, which is much smaller than the relaxation time , a certain number of spins
make transitions. The probability that a particular spin will make a transition from
UP to DOWN is given by R(−1|1)∆t. The total number of spins making a transition
from DOWN to UP, and from UP to DOWN, is:

NP(−1;t)R(1|–1)∆t

NP(1;t)R(−1|1)∆t
(1.6.64)

respectively. To implement the dynamics, we must randomly pick out of the whole en-
semble this number of UP spins and DOWN spins and flip them. The result would be
a new number of UP and DOWN spins NP(1;t + ∆t) and NP(−1;t + ∆t). The process
would then be repeated.

It might seem that there is no reason to randomly pick the ensemble elements to
flip, because the result is the same if we rearrange the spins arbitrarily. However, if
each spin represents an identifiable physical system (e.g., one spin out of a noninter-
acting Ising model) that is performing an internal dynamics we are representing, then
we must randomly pick the spins to flip.

It is somewhat inconvenient to have to worry about selecting a particular num-
ber of UP and DOWN spins separately. We can modify our prescription so that we se-
lect a subset of the spins regardless of orientation. To achieve this, we must allow that
some of the selected spins will be flipped and some will not. We select a fraction of
the spins of the ensemble. The number of these that are DOWN is NP(−1; t). In or-
der to flip the same number of spins from DOWN to UP, as in Eq.(1.6.64), we must flip
UP a fraction R(1|–1)∆t / of the NP(−1; t) spins. Con s equ en t ly, the fracti on of s p i n s
we do not flip is (1 – R( 1 | – 1 )∆t / ) . Si m i l a rly, the nu m ber of s el ected U P spins is

N P ( 1;t) the fracti on of these to be flipped is R(−1|1 )∆t / , and the fracti on we do not
flip is (1 − R(−1|1) ∆t/ ) . In order for these ex pre s s i ons to make sense (to be po s i tive )

must be large en o u gh so that at least one spin wi ll be flipped . This implies > max
(R( 1 | – 1 )∆t, R(−1 | 1 )∆t) . Moreover, we do not want to be larger than it must be
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because this will just force us to select additional spins we will not be flipping. A con-
venient choice would be to take

= (R(1| − 1) + R(−1|1))∆t = ∆t / (1.6.65)

The consequences of this choice are quite interesting, since we find that the fraction
of selected DOWN spins to be flipped UP is R(1|–1) / (R(1|–1) + R(−1|1)) = P(1), the
equilibrium fraction of UP spins. The fraction not to be flipped is the equilibrium
fraction of DOWN spins. Similarly, the fraction o f selected UP spins that are to be
flipped DOWN is the equilibrium fraction of DOWN spins, and the fraction to be left
UP is the equilibrium fraction of UP spins. Consequently, the outcome of the dynam-
ics of the selected spin does not depend at all on the initial state of the spin. The re-
vised prescription for the dynamics is to select a fraction of spins from the ensem-
ble and set them according to their equilibrium probability.

We still must choose the time interval ∆t. The smallest time interval that makes
sense is the interval for which the number of selected spins would be just one. A
smaller number would mean that sometimes we would not choose any spins.Setting
the number of selected spins N = 1 using Eq. (1.6.65) gives:

(1.6.66)

which also implies the condition ∆t << , and means that the approximation of a fi-
nite time increment ∆t is directly coupled to the size of the ensemble. Our new pre-
scription is that we select a single spin and set it UP or DOWN according to its equi-
librium probability. This would be the prescription of Glauber dynamics if the
ensemble were considered to be the Ising model without interactions. Thus for a non-
interacting Ising model, the Glaub er dynamics and the activated dynamics are the
same. So far we have made no approximation except the finite size of the ensemble.
We still have one more step to go to apply this to the interacting Ising model.

The activa ted dynamics is a stoch a s tic dy n a m i c s , so it does not make sense to
discuss on ly the dynamics of a particular sys tem but the dynamics of an en s em bl e
of Ising model s . At any mom en t , the activa ted dynamics treats the Ising model as a
co ll ecti on of s everal kinds of s p i n s . E ach kind of spin is iden ti f i ed by a parti c u l a r
va lue of E+ and EB. These para m eters are con tro ll ed by the local envi ron m ent of t h e
s p i n . The dynamics is not con cern ed with the source of these qu a n ti ti e s , on ly thei r
va lu e s . The dynamics are that of an en s em ble con s i s ting of s everal kinds of s p i n s
with a different nu m ber Nk of e ach kind of s p i n , wh ere k i n dexes the kind of s p i n .
According to the re sult of the previous para gra ph , and spec i f i c a lly Eq . ( 1 . 6 . 6 5 ) , we
can perform this dynamics over a time interval ∆t by sel ecting Nk∆t / k spins of e ach
kind and updating them according to the Glauber met h od . This is stri ct ly
a pp l i c a ble on ly for an en s em ble of Ising sys tem s . If the Ising sys tem that we are con-
s i dering contains many correl a ti on len g t h s , Eq . ( 1 . 6 . 5 0 ) , t h en it repre s ents the en-
s em ble by itsel f . Thus for a large en o u gh Ising model , we can app ly this to a singl e
s ys tem .

    
∆ t =

1

N(R(1 | −1)+ R(−1|1))
=

N
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If we want to select spins arbitrarily, rather than of a particular kind, we must
make the assumption that all of the relaxation times are the same, k → . This as-
sumption means that we would select a total number of spins:

(1.6.67)

As before, ∆t may also be chosen so that in each time interval only one spin is selected.
Using two assumptions, we have been able to derive the Glauber dynamics di-

rectly from the activated dynamics.One of the assumptions is that the dynamics must
be considered to apply only as the dynamics of an ensemble. Even though both dy-
namics are stochastic dynamics, applying the Glauber dynamics directly to a single
system is only the same as the activated dynamics for a large enough system. The sec-
ond assumption is the equivalence of the relaxation times k. When is this assumption
valid? The expression for the relaxation time in terms of the two-state system is given
by Eq. (1.4.44) as

1/ = (R(1|–1) + R(−1|1)) = (e−(EB −E1) /kT + e −(EB−E−1)/kT) (1.6.68)

When the relative energy of the two states E1 and E−1 varies between different spins,
this will in general vary. The size of the relaxation time is largely controlled by the
smaller of the two energy differences EB − E1 and EB − E−1. Thus,maintaining the same
relaxation time would require that the smaller energy difference is nearly constant.
This is essential, because the relaxation time changes exponentially with the energy
difference.

We have shown that the Glauber dynamics and the activated dynamics are closely
related despite appearing to be quite different. We have also found how to generalize
the Glauber dynamics if we must allow different relaxation times for different spins.
Finally, we have found that the time increment for a single spin update corresponds
to /N. This means that a single Glauber time step consisting of N spin updates cor-
responds to a physical time —the microscopic relaxation time of the individual
spins.

At this point we have introduced a dynamics for the Ising model, and it should
be possible for us to investigate questions about its kinetics.Often questions about the
kinetics may be described in terms of time correlations. Like the correlation length,
we can introduce a correlation time s that is given by the decay of the spin-spin cor-
relation

< si(t ′)si(t) > − < si >2 ∝ e −|t −t ′|/ s (1.6.69)

For the case of a relaxing two-state system,the correlation time is the relaxation time
. This follows from Eq. (1.4.45), with some attention to notation as described in

Question 1.6.13.

Question 1.6.13 Show that for a two-state system, the correlation time
is the relaxation time .

  

Nk∆t

kk
∑ → N

∆t
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Solution 1.6.13 The difficulty in this question is restoring some of the no-
tational details that we have been leaving out for convenience. From
Eq. (1.6.45) we have for the average:

(1.6.70)

Let’s assume that t ′> t, then each of these joint probabilities of the form
Psi(t ′),si(t)(s2,s1) is g iven by the probability that the two-state system starts in
the state s1 at time t, multiplied by the probability that it will evolve from s1

into s2 at time t ′.

(1.6.71)

The first factor on the ri ght is call ed the con d i ti onal prob a bi l i ty. The prob-
a bi l i ty for a particular state of the spin is the equ i l i brium prob a bi l i ty
t h a t we wro te as P(1) and P(−1 ) . The con d i ti onal prob a bi l i ties sati s f y
Psi( t′) ,si(t)( 1s1) + Psi(t ′) ,si ( t )(−1s1) = 1 , so we can simplify Eq . (1.6.70) to :

(1.6.72)

The evolution of the probabilities are described by Eq.(1.4.45),repeated here:

P(1;t) = (P(1;0) − P(1;∞))e-t/ + P(1;∞) (1.6.73)

Since the conditional probability assumes a definite value for the initial state
(e.g., P(1;0) = 1 for Ps(t ′),s(t)(1|1)), we have:

Ps(t ′),s(t)(1|1) = (1 − P(1))e − (t′-t)/ + P(1)

Ps(t′),s(t)(−1|–1) = (1 − P(−1))e − (t′-t)/ + P(−1)
(1.6.74)

Inserting these into Eq. (1.6.72) gives:

(1.6.75)

The constant term on the right is the same as the square of the average of the
spin:

<si(t)>2 = (P(1) − P(−1))2 (1.6.76)

Inserting into Eq.(1.6.69) leads to the desired result (we have assumed that
t′ > t):

<si(t ′)si(t)> − <si(t )>2 = 4P(1)P(−1)e−(t′ − t)/ ∝ e−(t′ − t)/ (1.6.77) ❚

    

< s i ( ′ t )s i (t) > = (2 (1− P(1))e −( ′ t −t )/ + P(1)[ ] −1)P(1)

+ (2 (1− P(−1))e −( ′ t −t )/ + P(−1)[ ]− 1)P(−1)

= 4P(1)P(−1)e −( ′ t −t )/ +(P(1) − P(−1))2

    < s i ( ′ t )s i (t) > = (2Ps i ( ′ t ), si (t )(1|1)− 1)P(1) +(2Ps i ( ′ t ),s i (t)(−1| −1)− 1)P(−1)

    Ps i ( ′ t ),s i(t )(s2 ,s1) = Ps i ( ′ t ), si (t )(s2 |s1)Psi (t )(s1)

    

< s i ( ′ t )s i (t) > = Ps i ( ′ t ),s i (t )(1,1)+ Ps i ( ′ t ),s i (t )(−1, −1)

− Ps i ( ′ t ), s i (t)(1,−1) − Ps i( ′ t ),s i (t )(−1,1)
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From the beginning of our discussion of the Ising model,a central issue has been
the breaking of the ergodic theorem associated with the spontaneous magnetization.
Now that we have introduced a kinetic model, we will tackle this problem directly.
First we describe the problem fully. The ergodic theorem states that a time average
may be replaced by an ensemble average. In the ensemble,all possible states of the sys-
tem are included with their Boltzmann probability. Without formal justification, we
have treated the spontaneous magnetization of the Ising model at h = 0 as a macro-
scopically observable quantity. According to our prescription,this is not the case. Let
us perform the average < si > over the ensemble at T = 0 and h = 0. There are two pos-
sible states of the system with the same energy, one with {si = 1} and one with {si = –1}.
Since they must occur with equal probability by our assumption, we have that the av-
erage < si > is zero.

This argument breaks down because of the kinetics of the sys tem that preven t s
a tra n s i ti on from one state to the other du ring the co u rse of a measu rem en t . Thu s
we measu re on ly one of the two po s s i ble states and find a magn eti z a ti on of 1 or –1.
How can we prove that this sys tem breaks the er godic theorem? The most direct te s t
is to start from a sys tem with a sligh t ly po s i tive magn etic field near T = 0 wh ere the
m a gn eti z a ti on is +1 , and reverse the sign of the magn etic fiel d . In this case the equ i-
l i brium state of the sys tem should have a magn eti z a ti on of – 1 . In s te ad the sys tem wi ll
maintain its magn eti z a ti on as +1 for a long time before even tu a lly swi tching from
one to the other. The process of s wi tching corre s ponds to the kinetics of a firs t - order
tra n s i ti on .

1.6.8 Kinetics of a first-order phase transition
In this section we discuss the first-order transition kinetics in the Ising model. Similar
arguments apply to other first-order transitions like the freezing or boiling of water.
If we start with an Ising model in equilibrium at a temperature T < Tc and a small
positive magnetic field h << zJ, the magnetization of the system is essentially m0( zJ).
If we change the magnetic field suddenly to a small negative value, the equilibrium
state of the system is −m0( zJ);however, the system will require some time to change
its magnetization. The change in the magnetic field has very little effect on the energy
of an individual spin si. This energy is mostly due to the interaction with its neigh-
bors, with a relatively small contribution due to the external field. Most of the time
the neighbors are oriented UP, and this makes the spin have a lower energy when it is
UP. This gives rise to the magnetization m0( zJ). Until si’s neighbors change their av-
erage magnetization, si has no reason to change its magnetization. But then neither do
the neighbors. Thus, because each spin is in its own local equilibrium,the process that
eventually equilibrates the system requires a cooperative effect including more than
one spin. The process by which such a first-order transition occurs is not the simul-
taneous switching of all of the spins from one value to the other. This would require
an impossibly long time. Instead the t ransition occurs by nucleation and growth of
the equilibrium phase.

It is easiest to describe the nucleation process when T is sufficiently less than Tc ,

so that the spins are almost always +1. In mean field, already for T < 0.737Tc the
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probability of a spin being UP is greater than 90% (P(1) = (1 + m)/2 > 0.9),and for
T < 0.61Tc the probability of a spin being UP is greater than 95%. As long as T is
greater than zero, individual spins will flip from time to time. However, even though
the magnetic field would like them to be DOWN, their local environment consisting of
UP spins does not. Since the interaction with their neighbors is stronger than the in-
teraction with the external field,the spin will generally flip back UP after a short time.
There is a smaller probability that a second spin,a neighbor of the first spin, will also
flip DOWN. Because one of the neighbors of the second spin is already DOWN, there is
a lower energy cost than for the first one. However, the energy of the second spin is
still higher when it is DOWN, and the spins will generally flip back, first one then the
other. There is an even smaller probability that three interacting spins will flipDOWN.
The existence of two DOWN spins makes it more likely for the third to do so. If the first
two spins were neighbors,than the third spin can have only one of them as its neigh-
bor. So it still costs some energy to flip DOWN the third spin. If there are three spins
flipped DOWN in an L shape,the spin that completes a 2 × 2 square has two neighbors
that are +1 and two neighbors that are –1,so the interactions with its neighbors can-
cel. The external field then gives a preference for it to be DOWN. There is still a high
probability that several of the spins that are DOWN will flip UP and the little cluster
will then disappear. Fig. 1.6.9 shows various clusters and their energies compared to a
uniform region of +1 spins. As more spins are added,the internal region of the clus-
ter becomes composed of spins that have four neighbors that are all DOWN. Beyond a
certain size (see Question 1.6.14) the cluster of DOWN spins will grow, because adding
spins lowers the energy of the system. At some point the growing region of DOWN

spins encounters another region of DOWN spins and the whole system reaches its new
equilibrium state, where most spins are DOWN.

Question 1.6.14 Using an estimate of how the energy of large clusters of
DOWN spins grows, show that large enough clusters must have a lower

energy than the same region if it were composed of UP spins.

Solution 1.6.14 The en er gy of a clu s ter of DOW N spins is given by its inter-
acti on with the ex ternal magn etic field and the nu m ber of a n ti a l i gn ed bon d s
that form its bo u n d a ry. The ch a n ge in en er gy due to the ex ternal magn eti c
f i eld is ex act ly 2hNc , wh i ch is proporti onal to the nu m ber of spins in the
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Figure 1.6.9 Illustration of small clusters of DOWN spins shown as filled dark squares resid-
ing in a background of UP spins on a square lattice. The energies for creating the clusters are
shown. The magnetic field, h, is negative. The formation of such clusters is the first step to-
wards nucleation of a DOWN region when the system undergoes a first-order transition from UP

to DOWN. The energy is counted by the number of spins that are DOWN times the magnetic field
strength, plus the interaction strength times the number of antialigned neighboring spins,
which is the length of the boundary of the cluster. In a first-order transition, as the size of
the clusters grows the gain from orienting toward the magnetic field eventually becomes
greater than the loss from the boundary energy. Then the cluster becomes more likely to grow
than shrink. See Question 1.6.14 and Fig. 1.6.10. ❚
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clu s ter Nc . This is nega tive since h is nega tive . The en er gy of the bo u n d a ry is
proporti onal to the nu m ber of a n ti a l i gn ed bon d s , and it is alw ays po s i tive .
Because every ad d i ti onal anti a l i gn ed bond raises the clu s ter en er gy, t h e
bo u n d a ry of the clu s ter tends to be smooth at low tem pera tu re s . Th erefore , we
can esti m a te the bo u n d a ry en er gy using a simple shape like a squ a re or circ u-
lar clu s ter in 2-d (a cube or ball in 3-d). Ei t h er way the en er gy wi ll increase as
f JNc

(d- 1 ) /d, wh ere d is the dimen s i on a l i ty and f is a constant acco u n ting for the
s h a pe . Si n ce the nega tive con tri buti on to the en er gy incre a s e s , in proporti on
to the area (vo lume) of the clu s ter, and the po s i tive con tri buti on to the en er gy
i n c reases in proporti on to the peri m eter (su rf ace area) of the clu s ter, the neg-
a tive term even tu a lly wi n s .O n ce a clu s ter is large en o u gh so that its en er gy is
dom i n a ted by the interacti on with the magn etic fiel d ,t h en , on - avera ge , ad d i n g
an ad d i ti onal spin to the clu s ter wi ll lower the sys tem en er gy. ❚

Question 1.6.15 Without looking at Fig. 1.6.9, construct all of the dif-
ferent possible clusters of as many as five DOWN spins.Label them with

their energy.

Solution 1.6.15 See Fig. 1.6.9. ❚

The scenario just described, known as nucleation and growth, is generally re-
sponsible for the kinetics of first-order transitions. We can illustrate the process
schematically (Fig. 1.6.10) using a one dimensional plot indicating the energy per spin
of a cluster as a function of the number of atoms in the cluster. The energy of the clus-
ter increases at first when there are very few spins in the cluster, and then decreases
once it is large enough. Eventually the energy decreases linearly with the number of
spins in the cluster. The decrease per spin is the energy difference per spin between the
two phases. The first cluster size that is “over the hump” is known as the critical clus-
ter. The process of reaching this cluster is known as nucleation.A first estimate of the
time to nucleate a critical cluster at a particular place in space is given by the inverse
of the Boltzmann factor of the highest energy barrier in Fig. 1.6.10. This corresponds
to the rate of transition over the barrier given by a two-state system with this same
barrier (see Eq. (1.4.38) and Eq. (1.4.44)). The size of the critical cluster depends on
the magnitude of the magnetic field.A larger magnetic field implies a smaller critical
cluster. Once the critical cluster is reached,the kinetics corresponds to the biased dif-
fusion described at the end of Section 1.4. The primary difficulty with an illustration
such as Fig. 1.6.10 is that it is one-dimensional. We would need to show the energy of
each type of cluster and all of the ways one cluster can transform into another.
Moreover, the clusters themselves may move in space and merge or separate. In Fig.
1.6.11 we show frames from a simulation of nucleation in the Ising model using
Glauber dynamics. The frames illustrate the process of nucleation and growth.

Experimental studies of nucleation kinetics are sometimes quite difficult. In
physical systems,impurities often lower the barrier to nucleation and therefore con-
trol the rate at which the first-order transition occurs. This can be a problem for the
investigation of the inherent nucleation because of the need to study highly purified
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systems. However, this sensitivity should be understood as an opportunity for control
over the kinetics. It is similar to the sensitivity of electrical properties to dopant im-
purities in a semiconductor, which enables the construction of semiconductor de-
vices. There is at least one direct example of the control of the kinetics of a first-order
transition. Before describing the example,we review a few properties of the water-to-
ice transition. The temperature of the water-to-ice transition can be lowered signifi-
cantly by the addition of impurities. The freezing temperature of salty ocean water is
lower than that of pure water. This suppression is thermodynamic in origin, which
means that the Tc is actually lower. There exist fish that live in sub-zero-degrees ocean
water whose blood has less salt than the surrounding ocean. These fish use a family of
so-called antifreeze proteins that are believed to kinetically suppress the freezing of
their blood. Instead of lowering the freezing temperature,these proteins suppress ice
nucleation.

The existence of a long nucleation time implies that it is often possible to create
metastable materials. For example, supercooled water is water whose temperature has
been lowered below its freezing point. For many years, particle physicists used a su-
perheated fluid to detect elementary particles. Ultrapure liquids in large tanks were
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Figure 1.6.10 Schematic illustration of the energies that control the kinetics of a first-order
phase transition. The horizontal axis is the size of a cluster of DOWN spins Nc that are the equi-
librium phase. The cluster is in a background of UP spins that are the metastable phase. The
vertical axis is the energy of the cluster. Initially the energy increases with cluster size until
the cluster reaches the critical cluster size. Then the energy decreases. Each spin flip has its
own barrier to overcome, leading to a washboard potential. The highest barrier EBmax that the
system must overcome to create a critical nucleus controls the rate of nucleation. This is sim-
ilar to the relaxation of a two-level system discussed in Section 1.4. However, this simple pic-
ture neglects the many different possible clusters and the many ways they can convert into
each other by the flipping of spins. A few different types of clusters are shown in Fig. 1.6.9. ❚

01adBARYAM_29412  3/10/02 10:17 AM  Page 183



# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 184
Title: Dynamics Complex Systems Short / Normal / Long

t=240

t=280 t=400

t=360

t=200 t=320

Figure 1.6.11 Frames from a simulation illustrating nucleation and growth in an Ising model
in 2-d. The temperature is T = zJ/3 and the magnetic field is h = −0.25. Glauber dynamics was
used. Each time step consists of N updates where the space size is N = 60 × 60. Frames shown
are in intervals of 40 time steps. The first frame shown is at t = 200 steps after the begin-
ning of the simulation. Black squares are DOWN spins and white areas are UP spins. The
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metastability of the UP phase is seen in the existence of only a few DOWN spins until the frame
at t = 320. All earlier frames are qualitatively the same as the frames at t = 200,240 and 280.
A critical nucleus forms between t = 280 and t = 320. This nucleus grows systematically un-
til the final frame when the whole system is in the equilibrium DOWN phase. ❚
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suddenly shifted above their boiling temperature. Small bubbles would then nucleate
along the ionization trail left by charged particles moving through the tank.The bub-
bles could be photographed and the tracks of the particles identified. Such detectors
were called bubble chambers. This methodology has been largely abandoned in favor
of electronic detectors. There is a limit to how far a system can be supercooled or su-
perheated. The limit is easy to understand in the Ising model. If a system with a pos-
itive magnetization m is subject to a negative magnetic field of magnitude greater
than zJm, then each individual spin will flip DOWN independent of its neighbors. This
is the ultimate limit for nucleation kinetics.

1.6.9 Connections between CA and the Ising model
Our primary objective throughout this section is the investigation of the equilibrium
properties of interacting systems. It is useful, once again, to consider the relationship
between the equilibrium ensemble and the kinetic CA we considered in Section 1.5.
When a deterministic CA evolves to a unique steady state independent of the initial
conditions, we can identify the final state as the T = 0 equilibrium ensemble. This is,
however, not the way we usually consider the relationship between a dynamic system
and its equilibrium condition. Instead, the equilibrium state of a system is generally
regarded as the time average over microscopic dynamics. Thus when we use the CA
to represent a microscopic dynamics, we could also identify a long time average of a
CA as the equilibrium ensemble. Alternatively, we can consider a stochastic CA that
evolves to a unique steady-state distribution where the steady state is the equilibrium
ensemble of a suitably defined energy function.

Computer Simulations (Monte Carlo,
Simulated Annealing)

Com p uter simu l a ti ons en a ble us to inve s ti ga te the properties of dynamical sys tems by
d i rect ly stu dying the properties of p a rticular model s . O ri gi n a lly, the introdu cti on of
com p uter simu l a ti on was vi ewed by many re s e a rch ers as an unde s i ra ble ad ju n ct to an-
a lytic theory. Cu rren t ly, s i mu l a ti ons play su ch an important role in scien tific stu d i e s
that many analytic re sults are not bel i eved unless they are te s ted by com p uter simu l a-
ti on . In part , this ref l ects the understanding that analytic inve s ti ga ti ons of ten requ i re
a pprox i m a ti ons that are not nece s s a ry in com p uter simu l a ti on s . Wh en a series of a p-
prox i m a ti ons has been made as part of an analytic stu dy, a com p uter simu l a ti on of t h e
ori ginal probl em can direct ly test the approx i m a ti on s . If the approx i m a ti ons are va l i-
d a ted , the analytic re sults of ten gen era l i ze the simu l a ti on re su l t s . In many other cases,
s i mu l a ti ons can be used to inve s ti ga te sys tems wh ere analytic re sults are unknown .

1.7.1 Molecular dynamics and deterministic simulations
The simulation of systems composed of microscopic Newtonian particles that expe-
rience forces due to interparticle interactions and external fields is called molecular
dynamics. The techniques of molecular dynamics simulations, which integrate

1.7
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