
Thermodynamics and Statistical Mechanics

The field of thermodynamics is easiest to understand in the context of Newtonian
mechanics. Newtonian mechanics describes the effect of forces on objects.
Thermodynamics describes the effect of heat transfer on objects. When heat is trans-
ferred,the temperature of an object changes.Temperature and heat are also intimately
related to energy. A hot gas in a piston has a high pressure and it can do mechanical
work by applying a force to a piston. By Newtonian mechanics the work is directly re-
lated to a transfer of energy. The laws of Newtonian mechanics are simplest to de-
scribe using the abstract concept of a point object with mass but no internal struc-
ture. The analogous abstraction for thermodynamic laws are materials that are in
equilibrium and (even better) are homogeneous. It turns out that even the descrip-
tion of the equilibrium properties of materials is so rich and varied that this is still a
primary focus of active research today.

Statistical mechanics begins as an effort to explain the laws of thermodynamics
by considering the microscopic application of Newton’s laws. Microscopically, the
temperature of a gas is found to be related to the kinetic motion of the gas molecules.
Heat transfer is the transfer of Newtonian energy from one object to another. The sta-
tistical treatment of the many particles of a material, with a key set of assumptions,
reveals that thermodynamic laws are a natural consequence of many microscopic par-
ticles interacting with each other. Our studies of complex systems will lead us to dis-
cuss the properties of systems composed of many interacting parts. The concepts and
tools of statistical mechanics will play an important role in these studies, as will the
laws of thermodynamics that emerge from them. Thermodynamics also begins to
teach us how to think about systems interacting with each other.

1.3.1 Thermodynamics
Thermodynamics describes macroscopic pieces of material in equilibrium in terms of
macroscopic parameters. Thermodynamics was developed as a result of experi-
ence/experiment and,like Newton’s laws,is to be understood as a set of self-consistent
definitions and equations. As with Newtonian mechanics, where in its simplest form
objects are point particles and friction is ignored,the discussion assumes an idealiza-
tion that is directly experienced only in special circumstances. However, the funda-
mental laws, once understood,can be widely applied. The central quantities that are
to be defined and related are the energy U, temperature T, entropy S, pressure P, the
mass (which we write as the number of particles) N, and volume V. For magnets,the
quantities should include the magnetization M, and the magnetic field H. Other
macroscopic quantities that are relevant may be added as necessary within the frame-
work developed by thermodynamics.Like Newtonian mechanics,a key aspect of ther-
modynamics is to understand how systems can be acted upon or can act upon each
other. In addition to the quantities that describe the state of a system, there are two
quantities that describe actions that may be made on a system to change its state: work
and heat transfer.

1.3
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The equations that relate the macroscopic quantities are known as the zeroth,
first and second laws of thermodynamics. Much of the difficulty in understanding
thermodynamics arises from the way the entropy appears as an essential but counter-
intuitive quantity. It is more easily understood in the context of a statistical treatment
included below. A second source of difficulty is that even a seemingly simple material
system, such as a piece of metal in a room, is actually quite complicated thermody-
namically. Under usual circumstances the metal is not in equilibrium but is emitting
a vapor of its own atoms.A thermodynamic treatment of the metal requires consid-
eration not only of the metal but also the vapor and even the air that applies a pres-
sure upon the metal. It is therefore generally simplest to consider the thermodynam-
ics of a gas confined in a closed (and inert) chamb er as a model thermodynamic
system. We will discuss this example in detail in Question 1.3.1. The translational mo-
tion of the whole system, treated by Newtonian mechanics, is ignored.

We begin by defining the concept of equilibrium.A system left in isolation for a
long enough time achieves a macroscopic state that does not vary in time.The system
in an unchanging state is said to be in equilibrium. Thermodynamics also relies upon
a particular type of equilibrium known as thermal equilibrium. Two systems can be
brought together in such a way that they interact only by transferring heat from one
to the other. The systems are said to be in thermal contact. An example would be two
gases separated by a fixed but thermally conducting wall.After a long enough time the
system composed of the combination of the two original systems will be in equilib-
rium. We say that the two systems are in thermal equilibrium with each other. We can
generalize the definition of thermal equilibrium to include systems that are not in
contact. We say that any two systems are in thermal equilibrium with each other if
they do not change their (macroscopic) state when they are brought into thermal con-
tact. Thermal equilibrium does not imply that the system is homogeneous, for exam-
ple, the two gases may be at different pressures.

The zeroth law of thermodynamics states that if two systems are in thermal equi-
librium with a third they are in thermal equilibrium with each other. This is not ob-
vious without experience with macroscopic objects. The zeroth law implies that the
interaction that occurs during thermal contact is not specific to the materials,it is in
some sense weak,and it matters not how many or how big are the systems that are in
contact. It enables us to define the temperature T as a quantity which is the same for
all systems in thermal equilibrium. A more specific definition of the temperature
must wait till the second law of thermodynamics. We also define the concept of a ther-
mal reservoir as a very large system such that any system that we are interested in,
when brought into contact with the thermal reservoir, will change its state by trans-
ferring heat to or from the reservoir until it is in equilibrium with the reservoir, but
the transfer of heat will not affect the temperature of the reservoir.

Quite basic to the formulation and assumptions of thermodynamics is that the
macroscopic state of an isolated system in equilibrium is completely defined by a
specification of three parameters: energy, mass and volume (U,N,V). For magnets we
must add the magnetization M; we will leave this case for later. The confinement of
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the system to a volume V is understood to result from some form of containment.
The state of a system can be characterized by the force per unit area—the pressure
P—exerted by the system on the container or by the container on the system, which
are the same. Since in equilibrium a system is uniquely described by the three quan-
tities (U,N,V), these determine all the other quantities, such as the pressure P and
temperature T. Strictly speaking, temperature and pressure are only defined for a sys-
tem in equilibrium, while the quantities (U,N,V) have meaning both in and out of
equilibrium.

It is assumed that for a homogeneous material, changing the size of the system by
adding more material in equilibrium at the same pressure and temperature changes
the mass,number of particles N, volume V and energy U, in direct proportion to each
other. Equivalently, it is assumed that cutting the system into smaller parts results in
each subpart retaining the same properties in proportion to each other (see Figs.1.3.1
and 1.3.2). This means that these quantities are additive for different parts of a system
whether isolated or in thermal contact or full equilibrium:

(1.3.1)

where indexes the parts of the system. This would not be true if the parts of the sys-
tem were strongly interacting in such a way that the energy depended on the relative
location of the parts. Properties such as (U,N,V) that are proportional to the size of
the system are called extensive quantities. Intensive quantities are properties that do
not change with the size of the system at a given pressure and temperature. The ratio
of two extensive quantities is an intensive quantity. Examples are the particle density
N/V and the energy density U/V. The assumption of the existence of extensive and in-
tensive quantities is also far from trivial, and corresponds to the intuition that for a
macroscopic object,the local properties of the system do not depend on the size of the
system. Thus a material may be cut into two parts, or a small part may be separated
from a large part, without affecting its local properties.

The simplest thermodynamic systems are homogeneous ones,like a gas in an in-
ert container. However we can also use Eq.(1.3.1) for an inhomogeneous system. For
example,a sealed container with water inside will reach a state where both water and
vapor are in equilibrium with each other. The use of intensive quantities and the pro-
portionality of extensive quantities to each other applies only within a single phase—
a single homogeneous part of the system, either water or vapor. However, the addi-
tivity of extensive quantities in Eq. (1.3.1) still applies to the whole system. A
homogeneous as well as a heterogeneous system may contain different chemical
species. In this case the quantity N is replaced by the number of each chemical species
Ni and the first line of Eq.(1.3.1) may be replaced by a similar equation for each species.

  

U = U∑
  

V = V∑
  

N = N∑
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Figure 1.3.1 Thermody-
namics considers macro-
scopic materials. A basic
assumption is that cut-
ting a system into two
parts will not affect the
local properties of the
material and that the en-
ergy U, mass (or number
of particles) N and the
volume V will be divided
in the same proportion.
The process of separation
is assumed to leave the
materials under the same
conditions of pressure
and temperature. ❚

Figure 1.3.2 The assumption that the local properties of a system are unaffected by subdi-
vision applies also to the case where a small part of a much larger system is removed. The lo-
cal properties, both of the small system and of the large system are assumed to remain un-
changed. Even though the small system is much smaller than the original system, the small
system is understood to be a macroscopic piece of material. Thus it retains the same local
properties it had as part of the larger system. ❚

The first law of thermodynamics describes how the energy of a system may
change. The energy of an isolated system is conserved. There are two macroscopic
processes that can change the energy of a system when the number of particles is fixed.
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The first is work,in the sense of applying a force over a distance, such as driving a pis-
ton that compresses a gas. The second is heat transfer. This may be written as:

dU = q + w (1.3.2)

where q is the heat transfer into the system, w is the work done on the system and U
is the internal energy of the system. The differential d signifies the incremental change
in the quantity U as a result of the incremental process of heat transfer and work. The
work performed on a gas (or other system) is the force times the distance applied Fdx,
where we write F as the magnitude of the force and dx as an incremental distance.
Since the force is the pressure times the area F = PA, the work is equal to the pressure
times the volume change or:

w = −PAdx = −PdV (1.3.3)

The negative sign arises because positive work on the system,increasing the system’s
energy, occurs when the volume change is negative. Pressure is defined to be positive.

If two systems act upon each other, then the energy transferred consists of both
the work and heat t ransfer. Each of these are separately equal in magnitude and op-
posite in sign:

dU1 = q21 + w21

dU2 = q12 + w12
(1.3.4)

q12 = −q21

w12 = −w21

where q21 is the heat transfer from system 2 to system 1,and w21 is the work performed
by system 2 on system 1. q12 and w12 are similarly defined. The last line of Eq.(1.3.4)
follows from Newton’s third law. The other equations follow from setting dU = 0 (Eq.
(1.3.2)) for the total system, composed of both of the systems acting upon each other.

The second law of thermodynamics g iven in the following few paragraphs de-
scribes a few key aspects of the relationship of the equilibrium state with nonequilib-
rium states.The statement of the second law is essentially a definition and description
of properties of the entropy. Entropy enables us to describe the process of approach
to equilibrium. In the natural course of events,any system in isolation will change its
state toward equilibrium. A system which is not in equilibrium must therefore un-
dergo an irreversible process leading to equilibrium. The process is irreversible be-
cause the reverse process would take us away from equilibrium, which is impossible
for a macroscopic system. Reversible change can occur if the state of a system in equi-
librium is changed by transfer of heat or by work in such a way (slowly) that it always
remains in equilibrium.

For every macroscopic state of a system (not necessarily in equilibrium) there ex-
ists a quantity S called the entropy of the system. The change in S is positive for any
natural process (change toward equilibrium) of an isolated system

(1.3.5)    dS ≥ 0
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For an isolated system, equality holds only in equilibrium when no change occurs.
The converse is also true—any possible change that increases S is a natural process.
Therefore, for an isolated system S achieves its maximum value for the equilibrium
state.

The second property of the entropy describes how it is affected by the processes
of work and heat transfer during reversible processes. The entropy is affected only by
heat transfer and not by work. If we only perform work and do not transfer heat the
entropy is constant. Such processes where q = 0 are called adiabatic processes. For adi-
abatic processes dS = 0.

The third property of the entropy is that it is extensive:

(1.3.6)

Since in equilibrium the state of the system is defined by the macroscopic quan-
tities (U,N,V), S is a function of them—S = S(U,N,V)—in equilibrium. The fourth
property of the entropy is that if we keep the size of the system constant by fixing both
the number of particles N and the volume V, then the change in entropy S with in-
creasing energy U is always positive:

(1.3.7)

where the subscripts denote the (values of the) constant quantities.Because of this we
can also invert the function S = S(U,N,V) to obtain the energy U in terms of S, N and
V: U = U(S,N,V).

Finally, we mention that the zero of the entropy is arbitrary in classical treat-
ments. The zero of entropy does attain significance in statistical treatments that in-
clude quantum effects.

Having described the properties of the entropy for a single system, we can now
reconsider the problem of two interacting systems. Since the entropy describes the
process of equilibration, we consider the process by which two systems equilibrate
thermally. According to the zeroth law, when the two systems are in equilibrium they
are at the same temperature. The two systems are assumed to be isolated from any
other influence,so that together they form an isolated system with energy Ut and en-
tropy St . Each of the subsystems is itself in equilibrium, but they are at different tem-
peratures initially, and therefore heat is t ransferred to achieve equilibrium. The heat
transfer is assumed to be performed in a reversible fashion—slowly. The two subsys-
tems are also assumed to have a fixed number of particles N1,N2 and volume V1,V2.
No work is done, only heat is transferred. The energies of the two systems U1 and U2

and entropies S1 and S2 are not fixed.
The transfer of heat results in a transfer of energy between the two systems ac-

cording to Eq. (1.3.4), since the total energy

Ut = U1 + U2 (1.3.8)

    

S

U

 

 
 

 

 
 

N ,V

> 0

  

S = S∑
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is conserved, we have

dUt = dU1 + dU2 = 0 (1.3.9)

We will consider the processes of equilibration twice. The first time we will iden-
tify the equilibrium condition and the second time we will describe the equilibration.
At equilibrium the entropy of the whole system is maximized. Variation of the en-
tropy with respect to any internal parameter will give zero at equilibrium. We can con-
sider the change in the entropy of the system as a function of how much of the energy
is allocated to the first system:

(1.3.10)

in equilibrium. Since the total energy is fixed, using Eq. (1.3.9) we have:

(1.3.11)

or

(1.3.12)

in equilibrium. By the definition of the temperature,any function of the derivative of
the entropy with respect to energy could be used as the temperature. It is conventional
to define the temperature T using:

(1.3.13)

This definition corresponds to the Kelvin temperature scale.The units of temperature
also define the units of the entropy. This definition has the advantage that heat always
flows from the system at higher temperature to the system at lower temperature.

To prove this last statement, consider a natural small transfer of heat from one
system to the other. The transfer must result in the two systems raising their collective
entropy:

dSt = dS1 + dS2 ≥ 0 (1.3.14)

We rewrite the change in entropy of each system in terms of the change in energy. We
recall that N and V are fixed for each of the two systems and the entropy is a function
only of the three macroscopic parameters (U,N,V). The change in S for each system
may be written as:

(1.3.15)

    

dS1 = S

U

 

 
 

 

 
 

N 1,V1

dU1

dS2 = S

U

 

 
 

 

 
 

N 2,V2

dU2

    

1

T
=

dS

dU

 

 
 

 

 
 

N ,V

    

dS1

dU1

=
dS 2

dU2

    

dSt

dU1

=
dS1

dU1

−
dS2

dU2

= 0

    

dSt

dU1

=
dS1

dU1

+
dS2

dU1

= 0
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to arrive at:

(1.3.16)

or using Eq. (1.3.9) and the definition of the temperature (Eq. (1.3.13)) we have:

(1.3.17)

or:

(T2 −T1) dU1 ≥ 0 (1.3.18)

This implies that a natural process of heat transfer results in the energy of the first sys-
tem increasing (dU1 > 0) if the temperature of the second system is greater than the
first ((T2 − T1) > 0), or conversely, ifthe temperature of the second system is less than
the temperature of the first.

Using the definition of temperature, we can also rewrite the expression for the
change in the energy of a system due to heat transfer or work, Eq.(1.3.2). The new ex-
pression is restricted to reversible processes. As in Eq. (1.3.2), N is still fixed.
Considering only reversible processes means we consider only equilibrium states of
the system, so we can write the energy as a function of the entropy U = U(S,N,V).
Since a reversible process changes the entropy and volume while keeping this function
valid, we can write the change in energy for a reversible process as

(1.3.19)

The first term reflects the effect of a change in entropy and the second reflects the
change in volume. The change in entropy is related to heat transfer but not to work.
If work is done and no heat is transferred,then the first term is zero. Comparing the
second term to Eq. (1.3.2) we find

(1.3.20)

and the incremental change in energy for a reversible process can be written:

dU = TdS − PdV (1.3.21)

This relationship enables us to make direct experimental measurements of entropy
changes. The work done on a system, in a reversible or irreversible process, changes
the energy of the system by a known amount. This energy can then be extracted in a
reversible process in the form of heat. When the system returns to its original state,we

    

P = −
U

V

 
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dU = U

S
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 
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1
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can quantify the amount of heat transferred as a form of energy. Measured heat trans-
fer can then be related to entropy changes using q = TdS.

Our treatment of the fundamentals of thermodynamics was brief and does not
contain the many applications necessary for a detailed understanding. The properties
of S that we have described are sufficient to provide a systematic treatment of the ther-
modynamics of macroscopic bodies. However, the entropy is more understandable
from a microscopic (statistical) description of matter. In the next section we intro-
duce the statistical treatment that enables contact between a microscopic picture and
the macroscopic thermodynamic treatment of matter. We will use it to give micro-
scopic meaning to the entropy and temperature.Once we have developed the micro-
scopic picture we will discuss two applications. The first application, the ideal gas, is
discussed in Section 1.3.3. The discussion of the second application,the Ising model
of magnetic systems, is postponed to Section 1.6.

1.3.2 The macroscopic state from microscopic statistics
In order to develop a microscopic understanding of the macroscopic properties of
matter we must begin by restating the nature of the systems that thermodynamics de-
scribes. Even when developing a microscopic picture, the thermodynamic assump-
tions are relied upon as guides. Macroscopic systems are assumed to have an extremely
large number N of individual particles (e.g.,at a scale of 1023) in a volume V. Because
the size of these systems is so large,they are typically investigated by considering the
limit of N →∞ and V → ∞, while the density n = N /V remains constant. This is called
the thermodynamic limit. Various properties of the system are separated into exten-
sive and intensive quantities. Extensive quantities are proportional to the size of the
system. Intensive quantities are independent of the size of the system. This reflects the
intuition that local properties of a macroscopic object do not depend on the size of
the system. As in Figs.1.3.1 and 1.3.2, the system may be cut into two parts, or a small
part may be separated from a large part without affecting its local properties.

The total energy U of an isolated system in equilibrium, along with the number
of particles N and volume V, defines the macroscopic state (macrostate) of an isolated
system in equilibrium. Microscopically, the energy of the system E is given in classical
mechanics in terms of the complete specification of the individual particle positions,
momenta and interaction potentials. Together these define the microscopic state (mi-
crostate) of the system. The microstate is defined differently in quantum mechanics
but similar considerations apply. When we describe the system microscopically we use
the notation E rather than U to describe the energy. The reason for this difference is
that macroscopically the energy U has some degree of fuzziness in its definition,
though the degree of fuzziness will not enter into our considerations. Moreover, U
may also be used to describe the energy of a system that is in thermal equilibrium with
another system. However, thinking microscopically, the energy of such a system is not
well defined,since thermal contact allows the exchange of energy between the two sys-
tems. We should also distinguish between the microscopic and macroscopic concepts
of the number of particles and the volume,but since we will not make use of this dis-
tinction, we will not do so.

66 I n t r od uc t i o n an d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 66
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 66



There are many possible microstates that correspond to a particular macrostate
of the system specified only by U,N,V. We now make a key assumption of statistical
mechanics—that all of the possible microstates of the system occur with equal prob-
ability. The number of these microstates (U,N,V), which by definition depends on
the macroscopic parameters, turns out to be central to statistical mechanics and is di-
rectly related to the entropy. Thus it determines many of the thermodynamic proper-
ties of the system, and can be discussed even though we are not always able to obtain
it explicitly.

We consider again the problem of interacting systems. As before, we consider two
systems (Fig. 1.3.3) that are in equilibrium separately, with state variables (U1,N1,V1)
and (U2,N2,V2). The systems have a number of microstates 1(U1,N1,V1) and

2(U2,N2,V2) respectively. It is not necessary that the two systems be formed of the
same material or have the same functional form of (U,N,V), so the function is
also labeled by the system index. The two systems interact in a limited way, so that they
can exchange only energy. The number of particles and volume of each system re-
mains fixed. Conservation of energy requires that the total energy Ut = U1 + U2 re-
mains fixed, but energy may be transferred from one system to the other. As before,
our objective is to identify when energy transfer stops and equilibrium is reached.

Consider the number of microstates of the whole system t . This number is a
function not only of the total energy of the system but also of how the energy is allo-
cated between the systems. So, we write t(U1,U2), and we assume that at any time
the energy of each of the two systems is well defined. Moreover, the interaction be-
tween the two systems is sufficiently weak so that the number of states of each system
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F i g u re 1.3.3 I l l u s t ration
of a system formed out
of two parts. The text
discusses this system
when energy is trans-
ferred from one part to
the other. The transfer of
energy on a microscopic
scale is equivalent to
the transfer of heat on a
macroscopic scale, since
the two systems are not
allowed to change their
number of particles or
their volume. ❚
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may be counted independently. Then the total number of microstates is the product
of the number of microstates of each of the two systems separately.

t(U1,U2) = 1(U1) 2(U2) (1.3.22)

where we have dropped the arguments N and V, since they are fixed throughout this
discussion. When energy is transferred,the number of microstates of each of the two
systems is changed. When will the transfer of energy stop? Left on its own,the system
will evolve until it reaches the most probable separation of energy. Since any particu-
lar state is equally likely, the most probable separation of energy is the separation that
gives rise to the greatest possible number of states. When the number of particles is
large,the greatest number of states corresponding to a particular energy separation is
much larger than the number of states corresponding to any other possible separa-
tion. Thus any other possibility is completely negligible. No matter when we look at
the system, it will be in a state with the most likely separation of the energy. For a
macroscopic system,it is impossible for a spontaneous transfer of energy to occur that
moves the system away from equilibrium.

The last paragraph implies that the transfer of energy from one system to the
other stops when t reaches its maximum value. Since Ut = U1 + U2 we can find the
maximum value of the number of microstates using:

(1.3.23)

or

(1.3.24)

The equivalence of these quantities is analogous to the equivalence of the tempera-
ture of the two systems in equilibrium. Since the derivatives in the last equation are
performed at constant N and V, it appears, by analogy to Eq. (1.3.12), that we can
identify the entropy as:

S = k ln( (E,N,V)). (1.3.25)

The constant k, known as the Boltzmann constant, is needed to ensure correspon-
dence of the microscopic counting of states with the macroscopic units of the entropy,
as defined by the relationship of Eq. (1.3.13), once the units of temperature and en-
ergy are defined.

The entropy as defined by Eq.(1.3.25) can be shown to satisfy all of the proper-
ties of the thermodynamic entropy in the last section. We have argued that an isolated

    

1

1(U1)
1(U1)

U1

= 1

2(U2)
2(U2)

U 2

ln 1(U1)

U1

= ln 2(U2)

U 2

    

t (U1 ,Ut −U1)

U1

= 0 = 1(U1)

U1
2(U t −U1) + 1(U1) 2(U t −U1)

U1

0 = 1(U1)

U1
2(U 2)− 1(U1) 2(U2)

U 2
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system evolves its macrostate in such a way that it maximizes the number of microstates
that correspond to the macrostate. By Eq. (1.3.25), this is the same as the first prop-
erty of the entropy in Eq. (1.3.5), the maximization of the entropy in equilibrium.

Interestingly, demonstrating the second property of the entropy, that it does not
change during an adiabatic process, requires further formal developments relating
entropy to information that will be discussed in Sections 1.7 and 1.8.We will connect
the two discussions and thus be able to demonstrate the second property of the entropy
in Chapter 8 (Section 8.3.2).

The extensive property of the entropy follows from Eq.(1.3.22). This also means
that the number of states at a particular energy grows exponentially with the size of
the system. More properly, we can say that experimental observation that the entropy
is extensive suggests that the interaction between macroscopic materials, or parts of a
single macroscopic material, is such that the microstates of each part of the system
may be enumerated independently.

The number of microstates can be shown by simple examples to increase with the
energy of the system. This corresponds to Eq.(1.3.7). There are also examples where
this can be violated, though this will not enter into our discussions.

We consider next a second example of interacting systems that enables us to eval-
uate the meaning of a system in equilibrium with a reservoir at a temperature T. We
consider a small part of a much larger system (Fig. 1.3.4). No assumption is necessary
regarding the size of the small system; it may be either microscopic or macroscopic.
Because of the contact of the small system with the large system, its energy is not
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Figure 1.3.4 In order to understand temperature we consider a closed system composed of
a large and small system, or equivalently a small system which is part of a much larger sys-
tem. The larger system serves as a thermal reservoir transferring energy to and from the small
system without affecting its own temperature. A microscopic description of this process in
terms of a single microscopic state of the small system leads to the Boltzmann probability.
An analysis in terms of the macroscopic state of the small system leads to the principle of
minimization of the free energy to obtain the equilibrium state of a system at a fixed tem-
perature. This principle replaces the principle of maximization of the entropy, which only ap-
plies for a closed system. ❚
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always the same.Energy will be transferred back and forth between the small and large
systems. The essential assumption is that the contact between the large and small sys-
tem does not affect any other aspect of the description of the small system. This means
that the small system is in some sense independent of the large system, despite the en-
ergy transfer. This is true if the small system is itself macroscopic, but it may also be
valid for certain microscopic systems. We also assume that the small system and the
large system have fixed numbers of particles and volumes.

Our obj ective is to con s i der the prob a bi l i ty that a particular micro s t a te of t h e
s m a ll sys tem wi ll be re a l i zed . A micro s t a te is iden ti f i ed by all of the micro s copic para-
m eters nece s s a ry to com p l etely define this state . We use the notati on {x , p} to den o te
these coord i n a te s . The prob a bi l i ty that this particular state wi ll be re a l i zed is given by
the fracti on of s t a tes of the whole sys tem for wh i ch the small sys tem attains this state .
Because there is on ly one su ch state for the small sys tem , the prob a bi l i ty that this state
wi ll be re a l i zed is given by (proporti onal to) a count of the nu m ber of s t a tes of the re s t
of the sys tem . Si n ce the large sys tem is mac ro s cop i c , we can count this nu m ber by us-
ing the mac ro s copic ex pre s s i on for the nu m ber of s t a tes of the large sys tem :

P({x, p}) ∝ R(Ut − E({x, p}),Nt − N,Vt − V) (1.3.26)

where E({x,p}),N,V are the energy, number of particles and volume of the micro-
scopic system respectively. E({x,p})is a function of the microscopic parameters {x,p}.
Ut ,Nt ,Vt are the energy, number of particles and volume of the whole system,includ-
ing both the small and large systems. R is the entropy of the large subsystem (reser-
voir). Since the number of states generally grows faster than linearly as a function of
the energy, we use a Taylor expansion of its logarithm (or equivalently a Taylor ex-
pansion of the entropy) to find

where we have not expanded in the number of particles and the volume because they
are unchanging. We take only the first term in the expansion, because the size of the
small system is assumed to be much smaller than the size of the whole system.
Exponentiating gives the relative probability of this particular microscopic state.

R(Ut − E({x,p}),Nt − N,Vt − V) = R(Ut ,Nt − N,Vt − V)e−E({x,p})/kT (1.3.28)

The probability of this particular state must be normalized so that the sum over all
states is one.Since we are normalizing the probability anyway, the constant coefficient
does not affect the result. This gives us the Boltzmann probability distribution:

    

ln R(U t − E({x, p}),N t − N ,Vt −V )

= ln R(U t ,Nt − N,Vt −V ) +
ln R(Ut ,N t − N ,Vt −V )

Et

 
 
  

 
 

N t ,Vt

(−E({x ,p}))

= ln R(Ut ,N t − N ,Vt −V ) + 1

kT
(−E({x ,p}))
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(1.3.29)

Eq. (1.3.29) is independent of the states of the large system and depends only on the
microscopic description of the states of the small system. It is this expression which
generally provides the most convenient starting point for a connection between the
microscopic description of a system and macroscopic thermodynamics. It identifies
the probability that a particular microscopic state will be realized when the system has
a well-defined temperature T. In this way it also provides a microscopic meaning to
the macroscopic temperature T. It is emphasized that Eq.(1.3.29) describes both mi-
croscopic and macroscopic systems in equilibrium at a temperature T.

The probability of occurrence of a particular state should be related to the de-
scription of a system in terms of an ensemble. We have found by Eq. (1.3.29) that a
system in thermal equilibrium at a temperature T is represented by an ensemble that
is formed by taking each of the states in proportion to its Boltzmann probability. This
ensemble is known as the canonical ensemble. The canonical ensemble should be
contrasted with the assumption that each state has equal probability for isolated sys-
tems at a particular energy. The ensemble of fixed energy and equal a priori proba-
bility is known as the microcanonical ensemble. The canonical ensemble is both eas-
ier to discuss analytically and easier to connect with the physical world. It will be
generally assumed in what follows.

We can use the Boltzmann probability and the definition of the canonical en-
semble to obtain all of the thermodynamic quantities. The macroscopic energy is
given by the average over the microscopic energy using:

(1.3.30)

For a macroscopic system,the average value of the energy will always be observed in
any specific measurement, despite the Boltzmann probability that allows all energies.
This is because the number of states of the system rises rapidly with the energy. This
rapid growth and the exponential decrease of the probability with the energy results
in a sharp peak in the probability distribution as a function of energy. The sharp peak
in the probability distribution means that the probability of any other energy is neg-
ligible. This is discussed below in Question 1.3.1.

For an isolated macroscopic system, we were able to identify the equilibrium state
from among other states of the system using the principle of the maximization of the
entropy. There is a similar procedure for a macroscopic system in contact with a ther-
mal reservoir at a fixed temperature T. The important point to recognize is that when
we had a closed system,the energy was fixed. Now, however, the objective becomes to
identify the energy at equilibrium. Of course, the energy is given by the average in

    

U =
1

Z
E({x , p})e −E({x ,p})/ kT

{x ,p}

∑

    

P({x, p}) =
1

Z
e −E({x ,p})/ kT

Z = e −E({ x,p}) /kT

{x ,p}
∑
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Eq.(1.3.30). However, to generalize the concept of maximizing the entropy, it is sim-
plest to reconsider the problem of the system in contact with the reservoir when the
small system is also macroscopic.

Instead of considering the probability of a particular microstate of well-defined
energy E, we consider the probability of a macroscopic state of the system with an en-
ergy U. In this case, we find the equilibrium state of the system by maximizing the
number of states of the whole system, or alternatively of the entropy:

(1.3.31)

To find the equilibrium state,we must maximize this expression for the entropy of the
whole system. We can again ignore the constant second term. This leaves us with
quantities that are only characterizing the small system we are interested in, and the
temperature of the reservoir. Thus we can find the equilibrium state by maximizing
the quantity

S − U/T (1.3.32)

It is conventional to rewrite this and, rather than maximizing the function in Eq.
(1.3.32), to minimize the function known as the free energy:

F = U − TS (1.3.33)

This suggests a simple physical significance of the process of change toward equilib-
rium. At a fixed temperature, the system seeks to minimize its energy and maximize
its entropy at the same time. The relative importance of the entropy compared to the
energy is set by the temperature. For high temperature, the entropy becomes more
dominant, and the energy rises in order to increase the entropy. At low temperature,
the energy becomes more dominant, and the energy is lowered at the expense of the
entropy. This is the precise statement of the observation that “everything flows down-
hill.” The energy entropy competition is a balance that is rightly considered as one of
the most basic of physical phenomena.

We can obtain a microscopic expression for the free energy by an exercise that be-
gins from a microscopic expression for the entropy:

(1.3.34)

The su m m a ti on is over all micro s copic state s . The delta functi on is 1 on ly wh en 
E({x, p}) = U. Thus the sum counts all of the micro s copic states with en er gy U. S tri ct ly
s pe a k i n g, the f u n cti on is assu m ed to be sligh t ly “f u z z y,” so that it gives 1 wh en 
E({x,p}) differs from U by a small amount on a mac ro s copic scale, but by a large amount
in terms of the differen ces bet ween en er gies of m i c ro s t a te s . We can then wri te

    

S = k ln( ) = k ln E x,p{ }( ),U
{x ,p}

∑
 

 
  

 

 
  

    

ln (U, N ,V ) + ln R(Ut −U ,Nt − N ,Vt −V)

= S(U ,N ,V )/k + SR(U t −U ,N t − N ,Vt −V )/k

= S(U,N ,V )/k + SR(U t ,N t − N,Vt −V )/k + 1

kT
(−U)
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(1.3.35)

Let us compare the sum in the logarithm with the expression for Z in Eq.(1.3.29). We
will argue that they are the same. This discussion hinges on the rapid increase in the
number of states as the energy increases. Because of this rapid growth,the value of Z
in Eq.(1.3.29) actually comes from only a narrow region of energy. We know from the
expression for the energy average, Eq.(1.3.30),that this narrow region of energy must
be at the energy U. This implies that for all intents and purposes the quantity in the
brackets of Eq. (1.3.35) is equivalent to Z. This argument leads to the expression:

(1.3.36)

Comparing with Eq. (1.3.33) we have

F = −kTlnZ (1.3.37)

Since the Boltzmann probability is a convenient starting point,this expression for the
free energy is often simpler to evaluate than the expression for the entropy, Eq.
(1.3.34).A calculation of the free energy using Eq.(1.3.37) provides contact between
microscopic models and the macroscopic behavior of thermodynamic systems. The
Boltzmann normalization Z, which is directly related to the free energy is also known
as the partition function. We can obtain other thermodynamic quantities directly
from the free energy. For example, we rewrite the expression for the energy Eq.
(1.3.30) as:

(1.3.38)

where we use the notation = 1/ kT. The entropy can be obtained using this expres-
sion for the energy and Eq. (1.3.33) or (1.3.36).

Question 1.3.1 Consider the possibility that the macroscopic energy of
a system in contact with a thermal reservoir will deviate from its typical

value U. To do this expand the probability distribution of macroscopic en-
ergies of a system in contact with a reservoir around this value. How large
are the deviations that occur?

Solution 1.3.1 We considered Eq.(1.3.31) in order to optimize the entropy
and find the typical value of the energy U. We now consider it again to find
the distribution of probabilities of values of the energy around the value U
similar to the way we discussed the distribution of microscopic states {x, p}
in Eq.(1.3.27). To do this we distinguish between the observed value of the

    

U =
1

Z
E({x , p})e − E({x,p})

{x ,p}

∑ = −
ln(Z)

=
F

    
S =

U

T
+ k lnZ

    

S = k ln( ) = k ln E x,p{ }( ),Ue −E x ,p{ }( ) / kTeU /kT

{x ,p}
∑
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 
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= U

T
+ k ln E x ,p{ }( ),Ue −E x ,p{ }( ) / kT
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energy U ′ and U. Note that we consider U ′ to be a macroscopic energy,
though the same derivation could be used to obtain the distribution of mi-
croscopic energies. The probability of U ′ is given by:

(1.3.39)

In the latter form we ignore the fixed arguments N and V. We expand the log-
arithm of this expression around the expected value of energy U:

(1.3.40)

where we have kept terms to second order. The first-order terms, which are
of the form (1/kT)(U ′ − U), have opposite signs and therefore cancel. This
implies that the probability is a maximum at the expected energy U. The sec-
ond derivative of the entropy can be evaluated using:

(1.3.41)

where CV is known as the specific heat at constant volume.For our purposes,
its only relevant property is that it is an extensive quantity. We can obtain a
similar expression for the reservoir and define the reservoir specific heat CVR.
Thus the probability is:

(1.3.42)

where we have left out the (constant) terms that do not depend on U ′.
Because CV and CVR are extensive quantities and the reservoir is much big-
ger than the small system, we can neglect 1/CVR compared to 1/CV. The re-
sult is a Gaussian distribution (Eq. (1.2.39)) with a standard deviation

= T√kCV (1.3.43)

This describes the characteristic deviation of the energy U ′ from the average
or typical energy U. However, since CV is extensive, the square root means
that the deviation is proportional to √N. Note that the result is consistent
with a random walk of N steps. So for a large system of N ∼ 1023 particles,the
possible deviation in the energy is smaller than the energy by a factor of (we
are neglecting everything but the N dependence) 1012—i.e., it is unde-
tectable. Thus the energy of a thermodynamic system is very well defined. ❚

1.3.3 Kinetic theory of gases and pressure
In the previous section, we described the microscopic analog of temperature and en-
tropy. We assumed that the microscopic analog of energy was understood,and we de-

    P( ′ U ) ∝e −(1/ 2kT
2

)(1/CV +1/ CVR )(U − ′ U )
2

≈ e −(1/ 2kT
2
)(1/CV )(U − ′ U )

2

    

d 2S(U)

dU 2
=

d

dU

1

T
= −

1

T2

1

dU /dT
= −

1

T 2CV

    

S( ′ U ) +SR(U t − ′ U )

= S(U )/k + SR(Ut −U)/k + 1

2k

d 2S(U)

dU 2
(U − ′ U )2 + 1

2k

d 2S(U t −U)

dUt
2

(U − ′ U )2

    P( ′ U ) ∝ ( ′ U , N ,V ) R(U t − ′ U ,N t − N ,Vt −V ) = e S( ′ U )/k +S R (U t − ′ U )/ k
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veloped the concept of free energy and its microscopic analog. One quantity that we
have not discussed microscopically is the pressure. Pressure is a Newtonian concept—
the force per unit area. For various reasons,it is helpful for us to consider the micro-
scopic origin of pressure for the example of a simplified model of a gas called an ideal
gas. In Question 1.3.2 we use the ideal gas as an example of the thermodynamic and
statistical analysis of materials.

An ideal gas is composed of indistinguishable point particles with a mass m but
with no internal structure or size. The interaction between the particles is neglected,
so that the energy is just their kinetic energy. The particles do interact with the walls
of the container in which the gas is confined. This interaction is simply that of reflec-
tion—when the particle is incident on a wall, the component of its velocity perpen-
dicular to the wall is reversed.Energy is conserved. This is in accordance with the ex-
pectation from Newton’s laws for the collision of a small mass with a much larger
mass object.

To obtain an expression for the pressure, we must suffer with some notational
hazards,as the pressure P, probability of a particular velocity P(v) and momentum of
a particular particle pi are all designated by the letter P but with different case, argu-
ments or subscripts.A bold letter F is used briefly for the force,and otherwise F is used
for the free energy. We rely largely upon context to distinguish them. Since the objec-
tive of using an established notation is to make contact with known concepts,this sit-
uation is sometimes preferable to introducing a new notation.

Because of the absence of collisions between different particles of the gas, there
is no communication between them, and each of the particles bounces around the
container on its own course. The pressure on the container walls is given by the force
per unit area exerted on the walls,as illustrated in Fig. 1.3.5. The force is given by the
action of the wall on the gas that is needed to reverse the momenta of the incident par-
ticles between t and t + ∆t :

(1.3.44)

where |F | is the magnitude of the force on the wall. The latter expression relates the
pressure to the change in the momenta of incident particles per unit area of the wall.
A is a small but still macroscopic area,so that this part of the wall is flat. Microscopic
roughness of the surface is neglected. The change in velocity ∆vi of the particles dur-
ing the time ∆t is zero for particles that are not incident on the wall. Particles that hit
the wall between t and t + ∆t are moving in the direction of the wall at time t and are
near enough to the wall to reach it during ∆t. Faster particles can reach the wall from
farther away, but only the velocity perpendicular to the wall matters. Denoting this ve-
locity component as v⊥, the maximum distance is v⊥∆t (see Fig. 1.3.5).

If the particles have velocity only perpendicular to the wall and no velocity par-
allel to the wall,then we could count the incident particles as those in a volume Av⊥∆t.
We can use the same expression even when particles have a velocity parallel to the sur-
face, because the parallel velocity takes particles out of and into this volume equally.

      
P =

F

A
=

1

A∆t
m∆v i

i
∑
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Another way to say this is that for a particular parallel velocity we count the particles
in a sheared box with the same height and base and therefore the same volume. The
total number of particles in the volume,(N / V)Av⊥∆t, is the volume times the density
(N /V).

Within the volume Av⊥∆t, the number of particles that have the velocity v⊥ is
given by the number of particles in this volume times the probability P(v⊥) that a par-
ticle has its perpendicular velocity component equal to v⊥. Thus the number of par-
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Figure 1.3.5 Illustration of a gas of ideal particles in a container near one of the walls.
Particles incident on the wall are reflected, reversing their velocity perpendicular to the wall,
and not affecting the other components of their velocity. The wall experiences a pressure due
to the collisions and applies the same pressure to the gas. To calculate the pressure we must
count the number of particles in a unit of time ∆t with a particular perpendicular velocity v⊥
that hit an area A. This is equivalent to counting the number of particles with the velocity
v⊥ in the box shown with one of its sides of length ∆tv⊥. Particles with velocity v⊥ will hit
the wall if and only if they are in the box. The same volume of particles applies if the parti-
cles also have a velocity parallel to the surface, since this just skews the box, as shown, leav-
ing its height and base area the same. ❚
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ticles incident on the wall with a particular velocity perpendicular to the wall v⊥ is
given by

(1.3.45)

The total change in momentum is found by multiplying this by the change in mo-
mentum of a single particle reflected by the collision, 2mv⊥, and integrating over all
velocities.

(1.3.46)

Divide this by A∆t to obtain the change in momentum per unit time per unit area,
which is the pressure (Eq. (1.3.44)),

(1.3.47)

We rewrite this in terms of the average squared velocity perpendicular to the surface

(1.3.48)

where the equal probability of having positive and negative velocities enables us to ex-
tend the integral to −∞ while eliminating the factor of two. We can rewrite Eq.(1.3.48)
in terms of the average square magnitude of the total velocity. There are three com-
ponents of the velocity (two parallel to the surface). The squares of the velocity com-
ponents add to give the total velocity squared and the averages are equal:

< v2 > = < v⊥
2 + v2

2 + v3
2 > = 3 < v⊥

2 > (1.3.49)

where v is the magnitude of the particle velocity. The pressure is:

(1.3.50)

Note that the wall does not influence the probability of having a particular velocity
nearby. Eq. (1.3.50) is a microscopic expression for the pressure, which we can cal-
culate using the Boltzmann probability from Eq. (1.3.29). We do this as part of
Question 1.3.2.

Question 1.3.2 Develop the statistical description of the ideal gas by ob-
taining expressions for the thermodynamic quantities Z, F, U, S and P,

in terms of N, V, and T. For hints read the first three paragraphs of the
solution.

Solution 1.3.2 The primary task of statistics is counting. To treat the ideal
gas we must count the number of microscopic states to obtain the entropy,
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N

V
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1

3
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2 >
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N

V
m 2 dv⊥
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∞
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V
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or sum over the Boltzmann probability to obtain Z and the free energy. The
ideal gas presents us with two difficulties.The first is that each particle has a
continuum of possible locations. The second is that we must treat the parti-
cles as microscopically indistinguishable. To solve the first problem, we have
to set some interval of position at which we will call a particle here different
from a particle there. Moreover, since a particle at any location may have
many different velocities, we must also choose a difference of velocities that
will be considered as distinct.We define the interval of position to be ∆x and
the interval of momentum to be ∆p. In each spatial dimension,the positions
between x and x +∆x correspond to a single state,and the momenta between
p and p + ∆p correspond to a single state. Thus we consider as one state of
the system a particle which has position and momenta in a six-dimensional
box of a size ∆x3∆p3. The size of this box enters only as a constant in classi-
cal statistical mechanics, and we will not be concerned with its value.
Quantum mechanics identifies it with ∆x3∆p3 = h3, where h is Planck’s con-
stant, and for convenience we adopt this notation for the unit volume for
counting.

There is a subtle but important choice that we have made. We have cho-
sen to make the counting intervals have a fixed width ∆p in the momentum.
From classical mechanics,it is not entirely clear that we should make the in-
tervals of fixed width in the momentum or, for example,make them fixed in
the energy ∆E. In the latter case we would count a single state between E and
E +∆E. Since the energy is proportional to the square of the momentum,this
would give a different counting. Quantum mechanics provides an unam-
biguous answer that the momentum intervals are fixed.

To solve the problem of the indistinguishability of the particles, we must
remember every time we count the number of states of the system to divide
by the number of possible ways there are to interchange the particles, which
is N !.

The energy of the ideal gas is given by the kinetic energy of all of the
particles:

(1.3.51)

where the velocity and momentum of a particle are three-dimensional vec-
tors with magnitude vi and pi respectively. We start by calculating the parti-
tion function (Boltzmann normalization) Z from Eq. (1.3.29)

(1.3.52)

where the integral is to be evaluated over all possible locations of each of the
N particles of the system. We have also included the correction to over-
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counting, N !. Since the particles do not see each other, the energy is a sum
over each particle energy. The integrals separate and we have:

(1.3.53)

The position integral gives the volume V, immediately giving the depen-
dence of Z on this macroscopic quantity. The integral over momentum can
be evaluated giving:

and we have that

(1.3.55)

We could have simplified the integration by recognizing that each compo-
nent of the momentum px,py and pz can be integrated separately, giving 3N
independent one-dimensional integrals and leading more succinctly to the
result. The result can also be written in terms of a natural length (T) that
depends on temperature (and mass):

(T) = (h2 / 2 mkT )1/2 (1.3.56)

(1.3.57)

From the partition function we obtain the free energy, making use of
Sterling’s approximation (Eq. (1.2.36)):

F = kTN(lnN − 1) − kTN ln(V / (T )3) (1.3.58)

where we have neglected terms that grow less than linearly with N. Terms
that vary as ln(N) vanish on a macroscopic scale. In this form it might ap-
pear that we have a problem,since the N ln(N) term from Sterling’s approx-
imation to the factorial does not scale proportional to the size of the system,
and F is an extensive quantity. However, we must also note the N ln(V) term,
which we can combine with the N ln(N) term so that the extensive nature is
apparent:

F = kTN[lnN (T)3/V) − 1] (1.3.59)
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It is interesting that the factor of N!,and thus the indistinguishability of par-
ticles,is necessary for the free energy to be extensive. If the particles were dis-
tinguishable,then cutting the system in two would result in a different count-
ing, since we would lose the states corresponding to particles switching from
one part to the other. If we combined the two systems back together, there
would be an effect due to the mixing of the distinguishable particles
(Question 1.3.3).

The energy may be obtained from Eq. (1.3.38) (any of the forms) as:

(1.3.60)

which provides an example of the equipartition the orem, which says that
each degree of freedom (position-momentum pair) of the system carries
kT / 2 of energy in equilibrium.Each of the three spatial coordinates of each
particle is one degree of freedom.

The expression for the entropy (S = (U − F)/T)

S = kN[ln(V/N (T)3) + 5/2] (1.3.61)

shows that the entropy per particle S/N grows logarithmically with the vol-
ume per particleV /N. Using the expression for U, it may be written in a form
S(U,N,V).

Finally, the pressure may be obtained from Eq.(1.3.20), but we must be
careful to keep N and S constant rather than T. We have

(1.3.62)

Taking the same derivative of the entropy Eq. (1.3.61) gives us (the deriva-
tive of S with S fixed is zero):

(1.3.63)

Substituting, we obtain the ideal gas equation of state:

PV = NkT (1.3.64)

which we can also obtain from the microscopic expression for the pressure—
Eq.(1.3.50). We describe two ways to do this.One way to obtain the pressure
from the microscopic expression is to evaluate first the average of the energy

(1.3.65)

This may be substituted in to Eq. (1.3.60) to obtain
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(1.3.66)

which may be substituted directly in to Eq. (1.3.50). Another way is to ob-
tain the average squared velocity directly. In averaging the velocity, it doesn’t
matter which particle we choose. We choose the first particle:

(1.3.67)

where we have further chosen to average over only one of the components of
the velocity of this particle and multiply by three. The denominator is the
normalization constant Z. Note that the factor 1/N !, due to the indistin-
guishability of particles, appears in the numerator in any ensemble average
as well as in the denominator, and cancels. It does not affect the Boltzmann
probability when issues of distinguishability are not involved.

There are 6N integrals in the numerator and in the denominator of Eq.
(1.3.67). All integrals factor into one-dimensional integrals.Each integral in
the numerator is the same as the corresponding one in the denominator, ex-
cept for the one that involves the particular component of the velocity we are
interested in. We cancel all other integrals and obtain:

(1.3.68)

The integral is performed by the same technique as used in Eq.(1.3.54). The
result is the same as by the other methods. ❚

Question 1.3.3 An insulated box is divided into two compartments by a
partition. The two compartments contain two different ideal gases at the

same pressure P and temperature T. The first gas has N1 particles and the sec-
ond has N2 particles. The partition is punctured. Calculate the resulting
change in thermodynamic parameters (N, V, U, P, S, T, F). What changes in
the analysis if the two gases are the same, i.e., if they are composed of the
same type of molecules?

Solution 1.3.3 By additivity the extrinsic properties of the whole system
before the puncture are (Eq. (1.3.59)–Eq. (1.3.61)):
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(1.3.69)

The pressure is intrinsic, so before the puncture it is (Eq. (1.3.64)):

P0 = N1kT /V1 = N2kT /V2 (1.3.70)

After the puncture, the total energy remains the same, because the
whole system is isolated. Because the two gases do not interact with each
other even when they are mixed, their properties continue to add after the
puncture. However, each gas now occupies the whole volume, V1 + V2. The
expression for the energy as a function of temperature remains the same,so
the temperature is also unchanged. The pressure in the container is now ad-
ditive: it is the sum of the pressure of each of the gases:

P = N1kT /(V1 + V2) + N2kT /(V1 + V2) = P0 (1.3.71)

i.e., the pressure is unchanged as well.
The only changes are in the entropy and the free energy. Because the two

gases do not interact with each other, as with other quantities, we can write
the total entropy as a sum over the entropy of each gas separately:

S = kN1[ln((V1 + V2)/N1 (T)3) + 5/2]

+ kN2[ln((V1 + V2)/N2 (T)3) + 5/2] (1.3.72)

= S0 + (N1 + N2)k ln(V1 + V2) − N1k ln(V1) − N2k ln(V2)

If we simplify to the case V1 = V2, we have S = S0 + (N1 + N2)k ln(2). Since
the energy is unchanged, by the relationship of free energy and entropy
(Eq. (1.3.33)) we have:

F = F0 − T(S − S0) (1.3.73)

If the two gases are composed of the same molecule,there is no change
in thermodynamic parameters as a result of a puncture. Mathematically, the
difference is that we replace Eq. (1.3.72) with:

S = k(N1 + N2)[ln((V1 + V2)/(N1 + N2) (T)3) + 5/2] = S0 (1.3.74)

where this is equal to the original entropy because of the relationship
N1/V1 = N2 / V2 from Eq. (1.3.70). This example illustrates the effect of in-
distinguishability. The entropy increases after the puncture when the gases
are different, but not when they are the same. ❚

Question 1.3.4 An ideal gas is in one compartment of a two-compartment
sealed and thermally insulated box. The compartment it is in has a vol-

ume V1. It has an energy U0 and a number of particles N0. The second com-

    

U 0 =U1 +U2 =
3

2
(N1 + N2)kT

V0 = V1 +V2

S0 = kN1[ln(V1 /N1 (T)3) + 5/2] +kN 2[ln(V2 / N2 (T)3) + 5/2]

F0 = kTN1[ln(N1 (T)3 /V1)− 1]+kTN 2[ln(N2 (T)3 /V2) −1]
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partment has volume V2 and is empty. Write expressions for the changes in
all thermodynamic parameters (N, V, U, P, S, T, F) if

a. the barrier between the two compartments is punctured and the gas ex-
pands to fill the box.

b. the barri er is moved slowly, l i ke a piston , expanding the gas to fill the box .

Solution 1.3.4 Recognizing what is conserved simplifies the solution of
this type of problem.

a. The energy U and the number of particles N are conserved. Since
the volume change is given to us explicitly, the expressions for T
(Eq. (1.3.60)), F (Eq. (1.3.59)), S (Eq. (1.3.61)), and P (Eq. (1.3.64)) in
terms of these quantities can be used.

N = N0

U = U0

V = V1 + V2 (1.3.75)

T = T0

F = kTN[ln(N (T)3 /(V1 + V2)) − 1] = F0 + kTN ln(V1 + V2))

S = kN[ln((V1 + V2) /N T)3) + 5/2] = S0 + kN ln((V1 + V2)/V1) 

P = NkT / V = NkT/(V1 + V2) = P0V1 /(V1 + V2)

b. The process is reversible and no heat is transferred,thus it is adiabatic—
the entropy is conserved. The number of particles is also conserved:

N = N0

S = S0

(1.3.76)

Our main task is to calculate the effect of the work done by the gas pres-
sure on the piston. This causes the energy of the gas to decrease,and the
temperature decreases as well. One way to find the change in tempera-
ture is to use the conservation of entropy, and Eq. (1.3.61), to obtain
that V / (T)3 is a constant and therefore:

T ∝ V-2/3 (1.3.77)

Thus the temperature is given by:

(1.3.78)

Since the temperature and energy are proportional to each other
(Eq. (1.3.60)), similarly:

(1.3.79)
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The free-energy expression in Eq. (1.3.59) changes only through the
temperature prefactor:

(1.3.80)

Finally, the pressure (Eq. (1.6.64)):

(1.3.81) ❚

The ideal gas illustrates the significance of the Boltzmann distribution. Consider
a single particle. We can treat it either as part of the large system or as a subsystem in
its own right. In the ideal gas, without any interactions, its energy would not change.
Thus the particle would not be described by the Boltzmann probability in Eq.
(1.3.29). However, we can allow the ideal gas model to include a weak or infrequent
interaction (collision) between particles which changes the particle’s energy. Over a
long time compared to the time between collisions, the particle will explore all possi-
ble positions in space and all possible momenta. The probability of its being at a par-
ticular position and momentum (in a region d3xd3p) is given by the Boltzmann dis-
tribution:

(1.3.82)

Instead of considering the trajectory of this particular particle and the effects of
the (unspecified) collisions, we can think of an ensemble that represents this particu-
lar particle in contact with a thermal reservoir. The ensemble would be composed of
many different particles in different boxes. There is no need to have more than one
particle in the system. We do need to have some mechanism for energy to be trans-
ferred to and from the particle instead of collisions with other particles. This could
happen as a result of the collisions with the walls of the box if the vibrations of the
walls give energy to the particle or absorb energy from the particle. If the wall is at the
temperature T, this would also give rise to the same Boltzmann distribution for the
particle. The probability of a particular particle in a particular box being in a partic-
ular location with a particular momentum would be given by the same Boltzmann
probability.

Using the Boltzmann probability distribution for the velocity, we could calculate
the average velocity of the particle as:
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(1.3.83)

which is the same result as we obtained for the ideal gas in the last part of
Question 1.3.2. We could even consider one coordinate of one particle as a separate
system and arrive at the same conclusion.Our description of systems is actually a de-
scription of coordinates.

There are differences when we consider the particle to be a member of an en-
semble and as one par ticle of a gas. In the ensemble, we do not need to consider the
distinguishability of particles. This does not affect any of the properties of a single
particle.

This discussion shows that the ideal gas model may be viewed as quite close to
the basic concept of an ensemble.Generalize the physical particle in three dimensions
to a point with coordinates that describe a complete system. These coordinates change
in time as the system evolves according to the rules of its dynamics.The ensemble rep-
resents this system in the same way as the ideal gas is the ensemble of the particle. The
lack of interaction between the different members of the ensemble,and the existence
of a transfer of energy to and from each of the systems to generate the Boltzmann
probability, is the same in each of the cases. This analogy is helpful when thinking
about the nature of the ensemble.

1.3.4 Phase transitions—first and second order
In the previous section we constructed some of the underpinnings of thermody-
namics and their connection with microscopic descriptions of materials using statis-
tical mechanics. One of the central conclusions was that by minimizing the free en-
ergy we can find the equilibrium state of a material that has a fixed number of
particles, volume and temperature. Once the free energy is minimized to obtain the
equilibrium state of the material, the energy, entropy and pressure are uniquely de-
termined. The free energy is also a function of the temperature, the volume and the
number of particles.

One of the important properties of materials is that they can change their prop-
erties suddenly when the temperature is changed by a small amount. Examples of this
are the transition of a solid to a liquid, or a liquid to a gas. Such a change is known as
a phase transition. Each well-defined state of the material is considered a particular
phase. Let us consider the process of minimizing the free energy as we vary the tem-
perature. Each of the properties of the material will, in general, change smoothly as
the temperature is varied. However, special circumstances might occur when the
minimization of the free energy at one temperature results in a very different set of
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properties of the material from this minimization at a slightly different temperature.
This is illustrated in a series of frames in Fig. 1.3.6, where a schematic of the free en-
ergy as a function of some macroscopic parameter is illustrated.

The temperature at which the jump in properties of the material occurs is called
the critical or transition temperature,Tc . In general,all of the properties of the mate-
rial except for the free energy jump discontinuously at Tc . This kind of phase transi-
tion is known as a first-order phase transition. Some of the properties of a first-order
phase transition are that the two phases can coexist at the transition temperature so
that part of the material is in one phase and part in the other. An example is ice float-
ing in water. If we start from a temperature below the transition temperature—with
ice—and add heat to the system gradually, the temperature will rise until we reach the
transition temperature. Then the temperature will stay fixed as the material converts
from one phase to the other—from ice to water. Once the whole system is converted
to the higher temperature phase, the temperature will start to increase again.
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F i g u re 1.3.6 Each of the
curves represents the
variation of the free en-
ergy of a system as a
function of macroscopic
parameters. The differ-
ent curves are for dif-
ferent temperatures. As
the temperature is var-
ied the minimum of the
free energy all of a sud-
den switches from one
set of macroscopic para-
meters to another. This
is a first-order phase
transition like the melt-
ing of ice to form water,
or the boiling of water
to form steam. Below
the ice-to-water phase
transition the macro-
scopic parameters that
describe ice are the min-
imum of the free energy,
while above the phase
transition the macro-
scopic parameters that
describe water are the
minimum of the free
energy. ❚
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The temperature Tc at which a transition occurs depends on the number of par-
ticles and the volume of the system. Alternatively, it may be considered a function of
the pressure. We can draw a phase-transition diagram (Fig. 1.3.7) that shows the tran-
sition temperature as a function of pressure. Each region of such a diagram corre-
sponds to a particular phase.

There is another kind of phase transition, known as a second-order phase tran-
sition, where the energy and the pressure do not change discontinuously at the phase-
transition point. Instead, they change continuously, but they are nonanalytic at the
transition temperature.A common way that this can occur is illustrated in Fig. 1.3.8.
In this case the single minimum of the free energy breaks into two minima as a func-
tion of temperature. The temperature at which the two minima appear is the transi-
tion temperature. Such a second-order transition is often coupled to the existence of
first-order transitions. Below the second-order transition temperature, when the two
minima exist, the variation of the pressure can change the relative energy of the two
minima and cause a first-order transition to occur. The first-order transition occurs
at a particular pressure Pc(T) for each temperature below the second-order transition
temperature. This gives rise to a line of first-order phase transitions. Above the
second-order transition temperature, there is only one minimum, so that there are
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Figure 1.3.7 Schematic phase diagram of H2O showing three phases — ice, water and steam.
Each of the regions shows the domain of pressures and temperatures at which a pure phase
is in equilibrium. The lines show phase transition temperatures, Tc(P), or phase transition
pressures, Pc(T). The different ways of crossing lines have different names. Ice to water: melt-
ing; ice to steam: sublimation; water to steam: boiling; water to ice: freezing; steam to wa-
ter: condensation; steam to ice: condensation to frost. The transition line from water to steam
ends at a point of high pressure and temperature where the two become indistinguishable. At
this high pressure steam is compressed till it has a density approaching that of water, and at
this high temperature water molecules are energetic like a vapor. This special point is a
second-order phase transition point (see Fig. 1.3.8). ❚
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Figure 1.3.8 Similar to
Fig. 1.3.6, each of the
curves represents the
variation of the free en-
ergy of a system as a
function of macroscopic
parameters. In this case,
however, the phase tran-
sition occurs when two
minima emerge from
one. This is a second-or-
der phase transition.
Below the temperature
at which the second-or-
der phase transition oc-
curs, varying the pres-
sure can give rise to a
first-order phase transi-
tion by changing the rel-
ative energies of the two
minima (see Figs. 1.3.6
and 1.3.7). ❚

also no first-order transitions. Thus, the second-order transition point occurs as the
end of a line of first-order transitions.A second-order transition is found at the end
of the liquid-to-vapor phase line of water in Fig. 1.3.7.
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The properties of second-order phase transitions have been extensively studied
because of interesting phenomena that are associated with them. Unlike a first-order
phase t ransition, there is no coexistence of two phases at the phase transition, be-
cause there is only one phase at that point. Instead, there exist large fluctuations in
the local properties of the material at the phase transition. A suggestion of why this
occurs can be seen from Fig. 1.3.8, where the free energy is seen to be very flat at the
phase transition. This results in large excursions (fluctuations) of all the properties
of the system except the free energy. These excursions, however, are not coherent
over the whole material. Instead, they occur at every length scale from the micro-
scopic on up. The closer a material is to the phase transition, the longer are the
length scales that are affected. As the temperature is varied so that the system moves
away from the transition temperature,the fluctuations disappear, first on the longest
length scales and then on shorter and shorter length scales. Because at the phase
transition itself even the macroscopic length scales are affected,thermodynamics it-
self had to be carefully rethought in the vicinity of second-order phase transitions.
The methodology that has been developed, the renormalization group, is an impor-
tant tool in the investigation of phase transitions. We will discuss it in Section 1.10.
We note that, to be consistent with Question 1.3.1, the specific heat CV must diverge
at a second-order phase transition, where energy fluctuations can be large.

1.3.5 Use of thermodynamics and statistical mechanics in
describing the real world

How do we generalize the notions of thermodynamics that we have just described to
apply to more realistic situations? The assumptions of thermodynamics—that sys-
tems are in equilibrium and that dividing them into parts leads to unchanged local
properties—do not generally apply. The breakdown of the assumptions of thermo-
dynamics occurs for even simple materials, but are more radically violated when we
consider biological organisms like trees or people. We still are able to measure their
temperature. How do we extend thermodynamics to apply to these systems?

We can start by considering a system quite close to the thermodynamic ideal—a
pure piece of material that is not in equilibrium. For example, a glass of water in a
room. We generally have no trouble placing a thermometer in the glass and measur-
ing the temperature of the water. We know it is not in equilibrium, because if we wait
it will evaporate to become a vapor spread out throughout the room (even if we sim-
plify by considering the room closed). Moreover, if we wait longer (a few hundred
years to a few tens of thousands of years),the glass itself will flow and cover the table
or flow down to the floor, and at least part of it will also sublime to a vapor. The table
will undergo its own processes of deterioration. These effects will occur even in an
idealized closed room without considerations of various external influences or traffic
through the room. There is one essential concept that allows us to continue to apply
thermodynamic principles to these materials,and measure the temperature of the wa-
ter, glass or table, and generally to discover that they are at the same (or close to the
same) temperature. The concept is the separation of time scales.This concept is as ba-
sic as the other principles of thermodynamics. It plays an essential role in discussions
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of the dynamics of physical systems and in particular of the dynamics of complex sys-
tems. The separation of time scales assumes that our observations of systems have a
limited time resolution and are performed over a limited time. The processes that oc-
cur in a material are then separated into fast processes that are much faster than the
time resolution of our observation, slow processes that occur on longer time scales
than the duration of observation,and dynamic processes that occur on the time scale
of our observation. Macroscopic averages are assumed to be averages over the fast
processes. Thermodynamics allows us to deal with the slow and the fast processes but
only in very limited ways with the dynamic processes. The dynamic processes are dealt
with separately by Newtonian mechanics.

Slow processes establish the framework in which thermodynamics can be ap-
plied. In formal terms,the ensemble that we use in thermodynamics assumes that all
the parameters of the system described by slow processes are fixed. To describe a sys-
tem using statistical mechanics, we consider all of the slowly varying parameters of
the system to be fixed and assume that equilibrium applies to all of the fast processes.
Specifically, we assume that all possible arrangements of the fast coordinates exist in
the ensemble with a probability given by the Boltzmann probability. Generally,
though not always, it is the microscopic processes that are fast. To justify this we can
consider that an atom in a solid vibrates at a rate of 1010–1012 times per second,a gas
molecule at room temperature travels five hundred meters per second. These are,
however, only a couple of select examples.

Sometimes we may still choose to perform our analysis by averaging over many
possible values of the slow coordinates. When we do this we have two kinds of en-
sembles—the ensemble of the fast coordinates and the ensemble of the different val-
ues of the slow coordinates. These ensembles are called the annealed and quenched
ensembles. For example, say we have a glass of water in which there is an ice cube.
There are fast processes that correspond to the motion of the water molecules and the
vibrations of the ice molecules,and there are also slow processes corresponding to the
movement of the ice in the water. Let’s say we want to determine the average amount
of ice. If we perform several measurements that determine the coordinates and size of
the ice, we may want to average the size we find over all the measurements even
though they are measurements corresponding to different locations of the ice. In con-
trast, if we wanted to measure the motion of the ice, averaging the measurements of
location would be absurd.

Closely related to the discussion of fast coordinates is the ergodic theorem. The
ergodic theorem states that a measurement performed on a system by averaging a
property over a long time is the same as taking the average over the ensemble of the
fast coordinates. This theorem is used to relate experimental measurements that are
assumed to occur over long times to theoretically obtained averages over ensembles.
The ergodic theorem is not a theorem in the sense that it has been proven in general,
but rather a statement of a property that applies to some macroscopic systems and is
known not to apply to others. The objective is to identify when it applies.When it does
not apply, the solution is to identify which quantities may be averaged and which may
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not, often by separating fast and slow coordinates or equivalently by identifying quan-
tities conserved by the fast dynamics of the system.

Experimental measurements also generally average properties over large regions
of space compared to microscopic lengths. It is this spatial averaging rather than time
averaging that often enables the ensemble average to stand for experimental mea-
surements when the microscopic processes are not fast compared to the measurement
time. For example, materials are often formed of microscopic grains and have many
dislocations. The grain boundaries and dislocations do move, but they often change
very slowly over time. When experiments are sensitive to their properties, they often
average over the effects of many grains and dislocations because they do not have suf-
ficient resolution to see a single grain boundary or dislocation.

In order to determine what is the relevant ensemble for a particular experiment,
both the effect of time and space averaging must be considered. Technically, this re-
quires an understanding of the correlation in space and time of the properties of an
individual system. More conceptually, measurements that are made for particular
quantities are in effect made over many independent systems both in space and in
time, and therefore correspond to an ensemble average. The existence of correlation
is the opposite of independence. The key question (like in the case of the ideal gas) be-
comes what is the interval of space and time that corresponds to an independent sys-
tem. These quantities are known as the correlation length and the correlation time. If
we are able to describe theoretically the ensemble over a correlation length and cor-
relation time, then by appropriate averaging we can describe the measurement.

In summary, the program of use of thermodynamics in the real world is to use
the separation of the different time scales to apply equilibrium concepts to the fast de-
grees of freedom and discuss their influence on the dynamic degrees of freedom while
keeping fixed the slow degrees of freedom. The use of ensembles simplifies consider-
ation of these systems by systematizing the use of equilibrium concepts to the fast de-
grees of freedom.

1.3.6 From thermodynamics to complex systems
Our objective in this book is to consider the dynamics of complex systems. While,as
discussed in the previous section, we will use the principles of thermodynamics to
help us in this analysis,another important reason to review thermodynamics is to rec-
ognize what complex systems are not. Thermodynamics describes macroscopic sys-
tems without structure or dynamics.The task of thermodynamics is to relate the very
few macroscopic parameters to each other. It suggests that these are the only relevant
parameters in the description of these systems. Materials and complex systems are
both formed out of many interacting parts. The ideal gas example described a mate-
rial where the interaction between the particles was weak.However, thermodynamics
also describes solids, where the interaction is strong. Having decided that complex
systems are not described fully by thermodynamics, we must ask, Where do the as-
sumptions of thermodynamics break down? There are several ways the assumptions
may break down, and each one is significant and plays a role in our investigation of

T he rmod yn a mi c s  a nd  s t a t is t i ca l  m echa n i c s 91

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 91
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 91



complex systems. Since we have not yet examined particular examples of complex sys-
tems, this discussion must be quite abstract. However, it will be useful as we study
complex systems to refer back to this discussion. The abstract statements will have
concrete realizations when we construct models of complex systems.

The assumptions of thermodynamics separate into space-related and time-
related assumptions. The first we discuss is the divisibility of a macroscopic material.
Fig. 1.3.2 (page 61) illustrates the property of divisibility. In this process,a small part
of a system is separated from a large part of the system without affecting the local
properties of the material. This is inherent in the use of extensive and intensive quan-
tities. Such divisibility is not true of systems typically considered to be complex sys-
tems. Consider, for example, a person as a complex system that cannot be separated
and continue to have the same properties. In words, we would say that complex sys-
tems are formed out of not only interacting, but also interdependent parts. Since both
thermodynamic and complex systems are formed out of interacting parts, it is the
concept of interdependency that must distinguish them. We will dedicate a few para-
graphs to defining a sense in which “interdependent” can have a more precise
meaning.

We must first address a simple way in which a system may have a nonextensive
energy and still not be a complex system. If we look closely at the properties of a ma-
terial, say a piece of metal or a cup of water, we discover that its surface is different
from the bulk. By separating the material into pieces, the surface area of the material
is changed. For macroscopic materials,this generally does not affect the bulk proper-
ties of the material.A characteristic way to identify surface properties, such as the sur-
face energy, is through their dependence on particle number. The surface energy
scales as N 2/3, in contrast to the extensive bulk energy that is linear in N. This kind of
correction can be incorporated directly in a slightly more detailed treatment of ther-
modynamics, where every macroscopic parameter has a surface term. The presence of
such surface terms is not sufficient to identify a material as a complex system. For this
reason, we are careful to identify complex systems by requiring that the scenario of
Fig. 1.3.2 is violated by changes in the local (i.e., everywhere including the bulk) prop-
erties of the system, rather than just the surface.

It may be asked whether the notion of “local properties” is sufficiently well de-
fined as we are using it. In principle,it is not. For now, we adopt this notion from ther-
modynamics. When only a few properties, like the energy and entropy, are relevant,
“affect locally”is a precise concept.Later we would like to replace the use of local ther-
modynamic properties with a more general concept—the behavior of the system.

How is the scenario of Fig. 1.3.2 violated for a complex system? We can find that
the local properties of the small part are affected without affecting the local proper-
ties of the large part.Or we can find that the local properties of the large part are af-
fected as well. The distinction between these two ways of affecting the system is im-
portant, because it can enable us to distinguish between different kinds of complex
systems. It will be helpful to name them for later reference. We call the first category
of systems complex materials, the second category we call complex organisms.
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Why don’t we also include the possibility that the large part is affected but not the
small part? At this point it makes sense to consider generic subdivision rather than
special subdivision. By generic subdivision, we mean the ensemble of possible subdi-
visions rather than a particular one.Once we are considering complex systems,the ef-
fect of removal of part of a system may depend on which part is removed. However,
when we are trying to understand whether or not we have a complex system, we can
limit ourselves to considering the generic effects of removing a part of the system. For
this reason we do not consider the possibility that subdivision affects the large system
and not the small. This might be possible for the removal of a particular small part,
but it would be surprising to discover a system where this is generically true.

Two examples may help to illu s tra te the different classes of com p l ex sys tem s . At
least su perf i c i a lly, plants are com p l ex materi a l s , while animals are com p l ex or ga n i s m s .
The re a s on that plants are com p l ex materials is that the cut ting of p a rts of a plant, su ch
as leave s , a bra n ch , or a roo t , typ i c a lly does not affect the local properties of the rest of
the plant, but does affect the exc i s ed part . For animals this is not gen eri c a lly the case.
However, it would be bet ter to argue that plants are in an interm ed i a te category, wh ere
s ome divi s i on s , su ch as cut ting out a lateral secti on of a tree tru n k , a f fect both small
and large part s , while others affect on ly the small er part . For animals, e s s en ti a lly all di-
vi s i ons affect both small and large part s .We bel i eve that com p l ex or ganisms play a spe-
cial role in the stu dy of com p l ex sys tem beh avi or. The essen tial qu a l i ty of a com p l ex
or ganism is that its properties are ti ed to the ex i s ten ce of a ll of its part s .

How large is the small part we are talking about? Loss of a few cells from the skin
of an animal will not generally affect it. As the size of the removed portion is de-
creased,it may be expected that the influence on the local properties of the larger sys-
tem will be reduced. This leads to the concept of a robust complex system.
Qualitatively, the larger the part that can be removed from a complex system without
affecting its local properties,the more robust the system is. We see that a complex ma-
terial is the limiting case of a highly robust complex system.

The flip side of subdivision of a system is aggregation. For thermodynamic sys-
tems, subdivision and aggregation are the same, but for complex systems they are
quite different. One of the questions that will concern us is what happens when we
place a few or many complex systems together. Generally we expect that the individ-
ual complex systems will interact with each other. However, one of the points we can
make at this time is that just placing together many complex systems, trees or people,
does not make a larger complex system by the criteria of subdivision. Thus, a collec-
tion of complex systems may result in a system that behaves as a thermodynamic sys-
tem under subdivision—separating it into parts does not affect the behavior of the
parts.

The topic of bri n ging toget h er many pieces or su b d ividing into many parts is also
qu i te disti n ct from the topic of su b d ivi s i on by rem oval of a single part . This bri n gs us
to a second assu m pti on we wi ll discuss.Th erm odynamic sys tems are assu m ed to be com-
po s ed of a very large nu m ber of p a rti cl e s . What abo ut com p l ex sys tems? We know that
the nu m ber of m o l ecules in a cup of w a ter is not gre a ter than the nu m ber of m o l ec u l e s
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in a human bei n g.And yet ,we understand that this is not qu i te the ri ght poi n t .We should
not be co u n ting the nu m ber of w a ter molecules in the pers on ,i n s te ad we might co u n t
the nu m ber of cell s , wh i ch is mu ch small er. Thus appe a rs the probl em of co u n ting the
nu m ber of com pon ents of a sys tem . In the con text of correl a ti ons in materi a l s , this was
bri ef ly discussed at the end of the last secti on . Let us assume for the mom ent that we
k n ow how to count the nu m ber of com pon en t s . It seems clear that sys tems with on ly a
few com pon ents should not be tre a ted by therm ody n a m i c s .One of the intere s ting qu e s-
ti ons we wi ll discuss is wh et h er in the limit of a very large nu m ber of com pon ents we
wi ll alw ays have a therm odynamic sys tem .S t a ted in a simpler way from the point of vi ew
of the stu dy of com p l ex sys tem s , the qu e s ti on becomes how large is too large or how
m a ny is too many. From the therm odynamic pers pective the qu e s ti on is, Un der wh a t
c i rc u m s t a n ces do we end up with the therm odynamic limit?

We now switch to a discussion of time-related assumptions.One of the basic as-
sumptions of thermodynamics is the ergodic theorem that enables the description of
a single system using an ensemble. When the ergodic theorem breaks down, as dis-
cussed in the previous section, additional fixed or quenched variables become im-
portant. This is the same as saying that there are significant differences between dif-
ferent examples of the macroscopic system we are interested in. This is a necessary
condition for the existence of a complex system. The alternative would be that all re-
alizations of the system would be the same, which does not coincide with intuitive no-
tions of complexity. We will discuss several examples of the breaking of the ergodic
theorem later. The simplest example is a magnet. The orientation of the magnet is an
additional parameter that must be specified, and therefore the ergodic theorem is vi-
olated for this system. Any system that breaks symmetry violates the ergodic theorem.
However, we do not accept a magnet as a complex system. Therefore we can assume
that the breaking of ergodicity is a necessary but not sufficient condition for com-
plexity. All of the systems we will discuss break ergodicity, and therefore it is always
necessary to specify which coordinates of the complex system are fixed and which are
to be assumed to be so rapidly varying that they can be assigned equilibrium
Boltzmann probabilities.

A special case of the breaking of the ergodic theorem, but one that strikes even
more deeply at the assumptions of thermodynamics, is a violation of the separation
of time scales. If there are dynamical processes that occur on every time scale, then it
becomes impossible to treat the system using the conventional separation of scales
into fast,slow and dynamic processes.As we will discuss in Section 1.10,the techniques
of renormalization that are used in phase transitions to deal with the existence of many
spatial scales may also be used to describe systems changing on many time scales.

Finally, inherent in thermodynamics,the concept of equilibrium and the ergodic
theorem is the assumption that the initial condition of the system does not matter. For
a complex system,the initial condition of the system does matter over the time scales
relevant to our observation. This brings us back to the concept of correlation time.
The correlation time describes the length of time over which the initial conditions are
relevant to the dynamics. This means that our observation of a complex system must
be shorter than a correlation time.The spatial analog, the correlation length,describes
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the effects of surfaces on the system. The discussion of the effects of subdivision also
implies that the system must be smaller than a correlation length. This means that
complex systems change their internal structure—adapt—to conditions at their
boundaries. Thus, a suggestive though incomplete summary of our discussion of
complexity in the context of thermodynamics is that a complex system is contained
within a single correlation distance and correlation time.

Activated Processes (and Glasses)

In the last section we saw figures (Fig. 1.3.7) showing the free energy as a function of
a macroscopic parameter with two minima. In this section we analyze a single parti-
cle system that has a potential energy with a similar shape (Fig. 1.4.1). The particle is
in equilibrium with a thermal reservoir. If the average energy is lower than the energy
of the barrier between the two wells, then the particle generally resides for a time in
one well and then switches to the other. At very low temperatures, in equilibrium,it
will be more and more likely to be in the lower well and less likely to be in the higher
well. We use this model to think about a system with two possible states, where one
state is higher in energy than the other. If we start the system in the higher energy state,
the system will relax to the lower energy state. Because the process of relaxation is en-
abled or accelerated by energy from the thermal resevoir, we say that it is activated.

1.4
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Figure 1.4.1 Illustration of the potential energy of a system that has two local minimum en-
ergy configurations x1 and x−1. When the temperature is lower than the energy barriers EB −
E−1 and EB − E1, the system may be considered as a two-state system with transitions between
them. The relative probability of the two states varies with temperature and the relative en-
ergy of the bottom of the two wells. The rate of transition also varies with temperature. When
the system is cooled systematically the two-state system is a simple model of a glass (Fig.
1.4.2). At low temperatures the system can not move from one well to the other, but is in
equilibrium within a single well. ❚
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1.4.1 Two-state systems
It might seem that a system with only two different states would be easy to analyze.
Eventually we will reach a simple problem. However, building the simple model will
require us to identify some questions and approximations relevant to our under-
standing of the application of this model to physical systems (e.g. the problem of pro-
tein folding found in Chapter 4). Rather than jumping to the simple two-state prob-
lem (Eq. (1.4.40) below), we begin from a particle in a double-well potential. The
kinetics and thermodynamics in this system give some additional content to the ther-
modynamic discussion of the previous section and introduce new concepts.

We consider Fig. 1.4.1 as describing the potential energy V(x) experienced by a
classical particle in one dimension. The region to the right of xB is called the right well
and to the left is called the left well.A classical trajectory of the particle with conserved
energy would consist of the particle bouncing back and forth within the potential well
between two points that are the solution of the equation V(x) = E, where E is the to-
tal energy of the particle. The kinetic energy at any time is given by

(1.4.1)

which determines the magnitude of the velocity at any position but not the direction.
The velocity switches direction every bounce.When the energy is larger than EB , there
is only one distinct trajectory at each energy. For energies larger than E1 but smaller
than EB , there are two possible trajectories, one in the right well—to the right of xB —
and one in the left well. Below E1, which is the minimum energy of the right well,there
is again only one trajectory possible, in the left well. Below E−1 there are no possible
locations for the particle.

If we consider this system in isolation,there is no possibility that the particle will
change from one trajectory to another. Our first objective is to enable the particle to
be in contact with some other system (or coordinate) with which it can transfer en-
ergy and momentum. For example, we could imagine that the particle is one of many
moving in the double well—like the ideal gas. Sometimes there are collisions that
change the energy and direction of the motion. The same effect would be found for
many other ways we could imagine the particle interacting with other systems. The
main approximation, however, is that the interaction of the particle with the rest of
the universe occurs only over short times. Most of the time it acts as if it were by itself
in the potential well. The particle follows a trajectory and has an energy that is the sum
of its kinetic and potential energies (Eq.(1.4.1)). There is no need to describe the en-
ergy associated with the interaction with the other systems. All of the other particles
of the gas (or whatever picture we imagine) form the thermal reservoir, which has a
well-defined temperature T.

We can increase the rate of collisions between the system and the reservoir with-
out changing our description. Then the particle does not go very far before it forgets
the direction it was traveling in and the energy that it had. But as long as the collisions
themselves occur over a short time compared to the time between collisions,any time
we look at the particle, it has a well-defined energy and momentum. From moment

      
E(x, p)−V (x) = 1

2
mv

2
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to moment,the kinetic energy and momentum changes unpredictably. Still,the posi-
tion of the particle must change continuously in time. This scenario is known as dif-
fusive motion. The different times are related by:

collision (interaction) time << time between collisions << transit time

where the transit time is the time between bounces from the walls of the potential well
if there were no collisions—the period of oscillation of a particle in the well. The par-
ticle undergoes a kind of random walk, with its direction and velocity changing ran-
domly from moment to moment. We will assume this scenario in our treatment of
this system.

When the par ticle is in contact with a thermal reservoir, the laws of thermody-
namics apply. The Boltzmann probability gives the probability that the particle is
found at position x with momentum p:

(1.4.2)

Formally, this expression describes a large number of independent systems that make
up a canonical ensemble.The ensemble of systems provides a formally precise way of
describing probabilities as the number of systems in the ensemble with a particular
value of the position and momentum. As in the previous section, Z guarantees that
the sum over all probabilities is 1. The factor of h is not relevant in what follows, but
for completeness we keep it and associate it with the momentum integral, so that
Σp → ∫dp /h.

If we are interested in the position of the particle,and are not interested in its mo-
mentum, we can simplify this expression by integrating over all values of the mo-
mentum. Since the energy separates into kinetic and potential energy:

(1.4.3)

The resulting expression looks similar to our original expression. Its meaning is some-
what different,however, because V(x) is only the potential energy of the system. Since
the kinetic energy contributes equivalently to the probability at every location, V(x)
determines the probability at every x. An expression of the form e−E/kT is known as the
Boltzmann factor of E. Thus Eq.(1.4.3) says that the probability P(x) is proportional
to the Boltzmann factor of V(x). We will use this same trick to describe the probabil-
ity of being to the right or being to the left of xB in terms of the minimum energy of
each well.

To simplify to a two-state system, we must define a variable that specifies only
which of the two wells the particle is in. So we label the system by s = ±1, where s = +1
if x > xB and s = −1 if x < xB for a particular realization of the system at a particular
time, or:

    

P(x) =
e −V(x )/kT (dp /h)∫ e − p 2 / 2mkT

dx∫ e −V(x )/kT (dp /h)∫ e − p
2

/2mkT
=

e −V(x)/kT

dx∫ e −V (x )/kT

    

P(x, p) = e −E(x ,p)/kT / Z

Z =
x ,p

∑ e −E(x ,p)/kT =
1

h
dxdp∫ e −E(x ,p)/kT
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s = sign(x − xB) (1.4.4)

Probabilistically, the case x = xB never happens and therefore does not have to be ac-
counted for.

We can calculate the probability P(s) of the system having a value of s =+1 using:

(1.4.5)

The largest con tri buti on to this prob a bi l i ty occ u rs wh en V(x) is small e s t . We assu m e
that k T is small com p a red to EB, t h en the va lue of the integral is dom i n a ted by the re-
gi on immed i a tely in the vi c i n i ty of the minimum en er gy. De s c ri bing this as a two - s t a te
s ys tem is on ly meaningful wh en this is tru e . We simplify the integral by expanding it in
the vi c i n i ty of the minimum en er gy and keeping on ly the qu ad ra tic term :

(1.4.6)

where

(1.4.7)

is the effective spring constant and 1 is the frequency of small oscillations in the right
well. We can now write Eq. (1.4.5) in the form

(1.4.8)

Because the integrand in the numerator falls rapidly away from the point x = x1, we
could extend the lower limit to −∞. Similarly, the probability of being in the left
well is:

(1.4.9)

Here the upper limit of the integral could be extended to ∞. It is simplest to assume
that k1 = k−1. This assumption, that the shape of the wells are the same, does not sig-
nificantly affect most of the discussion (Question 1.4.1–1.4.2). The two probabilities
are proportional to a new constant times the Boltzmann factor e−E/kT of the energy at
the bottom of the well. This can be seen e ven without performing the integrals in
Eq. (1.4.8) and Eq. (1.4.9). We redefine Z for the two-state representation:

    

P(−1) =

e −E −1 /kT dx e −k−1 (x−x −1 )
2

/2kT

−∞

x B

∫
dx∫ e −V (x)/kT

    

P(1) =

e −E1 /kT dx e −k1 (x−x 1)2 /2kT

x B

∞

∫
dx∫ e −V (x )/kT

    

k1 = m 1
2 =

d 2V(x)

dx 2
x 1

    
V (x) = E1 + 1

2
m 1

2(x − x1)2 + … =E1 + 1
2

k1(x − x1)2 + …

    

P(1) =

dx e −V (x )/kT

x B

∞

∫
dx∫ e −V (x)/ kT
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(1.4.10)

(1.4.11)

The new normalization Zs can be obtained from:

(1.4.12)

giving

(1.4.13)

which is different from the value in Eq. (1.4.2). We arrive at the desired two-state
result:

(1.4.14)

where f is the Fermi probability or Fermi function:

(1.4.15)

For readers who were introduced to the Fermi function in quantum statistics,it is not
unique to that field, it occurs anytime there are exactly two different possibilities.
Similarly,

(1.4.16)

which is consistent with Eq. (1.4.12) above since

(1.4.17)

Question 1.4.1 Discuss how k 1 ≠ k−1 would affect the results for the two-
state system in equilibrium. Obtain expressions for the probabilities in

each of the wells.

Solution 1.4.1 Extending the integrals to ±∞, as described in the text after
Eq. (1.4.8) and Eq. (1.4.9), we obtain:

(1.4.18)

(1.4.19)

    

P(−1) =
e −E1 / kT 2 kT /k−1

dx∫ e −V (x )/ kT

    

P(1) =
e −E1 /kT 2 kT /k1

dx∫ e −V (x)/ kT

    f (x) + f (−x) = 1

    
P(−1) =

e −E−1 /kT

e −E1 / kT +e −E −1 /kT
=

1

1+e (E −1 −E1 )/ kT
= f (E−1 − E1)

    
f (x) =

1

1+e x /kT

    
P(1) =

e −E1 /kT

e −E1 /kT + e −E−1 /kT
=

1

1+ e (E1−E−1 )/kT
= f (E1 − E−1)

    Z s = e −E1 /kT + e −E −1 / kT

    P(1)+ P(−1) = 1

    
P(1) =

e −E1 /kT

Z s

    
P(−1) =

e −E −1 /kT

Z s
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Because of the approximate extension of the integrals, we are no longer guar-
anteed that the sum of these probabilities is 1. However, within the accuracy
of the approximation, we can reimpose the normalization condition. Before
we do so, we choose to rewrite k1 = m 1

2 = m(2 1)2, where 1 is the natural
frequency of the well. We then ignore all common factors in the two proba-
bilities and write

(1.4.20)

(1.4.21)

(1.4.22)

Or we can write, as in Eq. (1.4.14)

(1.4.23)

and similarly for P(−1). ❚

Question 1.4.2 Redefine the energies E1 and E−1 to include the effect of
the difference between k1 and k−1 so that the probability P(1) (Eq.

(1.4.23)) can be written like Eq. (1.4.14) with the new energies. How is the
result related to the concept of free energy and entropy?

Solution 1.4.2 We define the new energy of the right well as

(1.4.24)

This definition can be seen to recover Eq. (1.4.23) from the form of Eq.
(1.4.14) as

(1.4.25)

Eq. (1.4.24) is very reminiscent of the definition of the free energy Eq.
(1.3.33) if we use the expression for the entropy:

(1.4.26)

Note that if we consider the temperature dependence, Eq. (1.4.25) is not
identical in its behavior with Eq.(1.4.14). The free energy, F1, depends on T,
while the energy at the bottom of the well, E1, does not. ❚

In Question 1.4.2, Eq. (1.4.24), we have defined what might be interpreted as a
free energy of the right well. In Section 1.3 we defined only the free energy of the sys-
tem as a whole. The new free energy is for part of the ensemble rather than the whole
ensemble. We can do this quite generally. Start by identifying a certain subset of all

    S1 = −k ln( 1)

    P(1) = f (F1 − F−1)

    F1 = E1 +kT ln( 1)

    

P(1) =
1

1+ ( 1 / −1)e (E1−E−1 )/kT

    ′ Z s = −1
−1e −E1 /kT + −1

−1e −E−1 /kT

    
P(−1) = −1

−1e −E−1 /kT

′ Z s

    
P(1) = 1

−1e −E1 /kT

′ Z s
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possible states of a system. For example, s = 1 in Eq. (1.4.4). Then we define the free
energy using the expression:

(1.4.27)

This is similar to the usual expression for the free energy in terms of the partition
function Z, but the sum is only over the subset of states. When there is no ambiguity,
we often drop the subscript and write this asF(1). From this definition we see that the
probability of being in the subset of states is proportional to the Boltzmann factor of
the free energy

(1.4.28)

If we have several different subsets that account for all possibilities, then we can nor-
malize Eq. (1.4.28) to find the probability itself. If we do this for the left and right
wells, we immediately arrive at the expression for the probabilities in Eq.(1.4.14) and
Eq. (1.4.16), with E1 and E−1 replaced by Fs(1) and Fs(−1) respectively. From
Eq.(1.4.28) we see that for a collection of states,the free energy plays the same role as
the energy in the Boltzmann probability.

We note that Eq. (1.4.24) is not the same as Eq.(1.4.27). However, as long as the
relative energy is the same, F1 − F−1 = Fs(1) − Fs(−1),the normalized probability is un-
changed. When k1 = k−1, the entropic part of the free energy is the same for both wells.
Then direct use of the energy instead of the free energy is valid,as in Eq.(1.4.14). We
can evaluate the free energy of Eq. (1.4.27), including the momentum integral:

(1.4.29)

(1.4.30)

where we have used the definition of the well oscillation frequency above Eq.(1.4.20)
to simplify the expression.A similar expression holds for Z−1. The result would be ex-
act for a pure harmonic well.

The new definition of the free energy of a set of states can also be used to under-
stand the treatment of macroscopic systems,specifically to explain why the energy is
determined by minimizing the free energy. Partition the possible microstates by the
value of the energy, as in Eq. (1.3.35). Define the free energy as a function of the en-
ergy analogous to Eq. (1.4.27)

(1.4.31)

    

F(U) = −kT ln E x ,p{ }( ),Ue
−E x ,p{ }( )/ kT

{x ,p}

∑
 

 
  

 

 
  

    Fs(1) = E1 +kT ln(h 1 /kT )

    

Z 1 = dx
x B

∞

∫ (dp /h)∫ e −E(x ,p)/ kT = dx
x B

∞

∫ e −V (x)/kT (dp /h)∫ e −p2 / 2mkT

≈ e −E1 /kT dx e −k1 (x−x 1)
2

/2kT

x B

∞

∫ 2 mkT /h ≈ e −E1/ kT m /k1 2 kT /h

= e −E1 /kTkT /h 1

    P(1) ∝e −Fs (1)/ kT

    

Fs(1) = −kT ln( s ,1 e −E({x ,p})/ kT

{x ,p}

∑ ) = −kT ln(Z 1)
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Since the relative probability of each value of the energy is given by

(1.4.32)

the most likely energy is given by the lowest free energy. For a macroscopic system,
the most likely value is so much more likely than any other value that it is observed
in any measurement. This can immediately be generalized. The minimization of the
free energy gives not only the value of the energy but the value of any macroscopic
parameter.

1.4.2 Relaxation of a two-state system
To investigate the kinetics of the two-state system, we assume an ensemble of systems
that is not an equilibrium ensemble. Instead,the ensemble is characterized by a time-
dependent probability of occupying the two wells:

(1.4.33)

Normalization continues to hold at every time:

(1.4.34)

For example, we might consider starting a system in the upper well and see how the
system evolves in time. Or we might consider starting a system in the lower well and
see how the system evolves in time. We answer the question using the time-evolving
probabilities that describe an ensemble of systems with the same starting condition.
To achieve this objective, we construct a differential equation describing the rate of
change of the probability of being in a particular well in terms of the rate at which sys-
tems move from one well to the other. This is just the Master equation approach from
Section 1.2.4.

The systems that make transitions from the left to the right well are the ones that
cross the point x = xB. More precisely, the rate at which transitions occur is the prob-
ability current per unit time of systems at xB, moving toward the right. Similar to Eq.
(1.3.47) used to obtain the pressure of an ideal gas on a wall,the number of particles
crossing xB is the probability of systems at xB with velocity v, times their velocity:

(1.4.35)

where J(1|−1) is the number of systems per unit time moving from the left to the
right. There is a hidden assumption in Eq. (1.4.35). We have adopted a notation that
treats all systems on the left together. When we are considering transitions,this is only
valid if a system that crosses x = xB from right to left makes it down into the well on
the left, and thus does not immediately cross back over to the side it came from.

We further assume that in each well the systems are in equilibrium, even when
the two wells are not in equilibrium with each other. This means that the probability
of being in a particular location in the right well is given by:

      

J(1 |−1) = (dp /h)vP(x B , p;t)
0

∞

∫

    P(1;t) + P(−1;t) = 1

    

P(1) → P(1;t)

P(−1) → P(−1;t)

    P(U) ∝e −F(U )/kT
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(1.4.36)

In equilibrium,this statement is true because then P(1) = Z1 /Z. Eq.(1.4.36) presumes
that the rate of collisions between the particle and the thermal reservoir is faster than
both the rate at which the system goes from one well to the other and the frequency
of oscillation in a well.

In order to evaluate the transition rate Eq.(1.4.35), we need the probability at xB.
We assume that the systems that cross xB moving from the left well to the right well
(i.e.,moving to the right) are in equilibrium with systems in the left well from where
they came. Systems that are moving from the right well to the left have the e quilib-
rium distribution characteristic of the right well. With these assumptions, the rate at
which systems hop from the left to the right is given by:

(1.4.37)

We find using Eq. (1.4.29) that the current of systems can be written in terms of a
transition rate per system:

(1.4.38)

Similarly, the current and rate at which systems hop from the right to the left are given
by:

(1.4.39)

When k1 = k−1 then 1 = −1. We continue to deal with this case for simplicity and de-
fine = 1 = −1. The expressions for the rate of transition suggest the interpretation
that the frequency is the rate of attempt to cross the barrier. The probability of cross-
ing in each attempt is given by the Boltzmann factor, which gives the likelihood that
the energy exceeds the barrier. While this interpretation is appealing, and is often
given,it is misleading. It is better to consider the frequency as describing the width of
the well in which the particle wanders. The wider the well is,the less likely is a barrier
crossing. This interpretation survives better when more general cases are considered.

The tra n s i ti on ra tes en a ble us to con s tru ct the time va ri a ti on of the prob a bi l i ty
of occ u pying each of the well s . This gives us the co u p l ed equ a ti ons for the two
prob a bi l i ti e s :

(1.4.40)

    
˙ P (−1;t) = R(−1|1)P(1;t) − R(1| −1)P(−1;t)

    
˙ P (1;t) = R(1| −1)P(−1;t) − R(−1|1)P(1;t)

    

J(−1 |1) = R(−1 |1)P(1;t)

R(−1 |1) = 1e
−(E B −E1 )/ kT

    

J(1| −1) = R(1| −1)P(−1;t)

R(1| −1) = −1e
− EB −E −1( ) /kT

    

J(1 |−1) = (dp /h)(p /m) P(−1;t)e −(EB +p 2 / 2m)/ kT /Z −1
 
 
  

 
 

0

∞

∫
= P(−1;t)e −EB / kT (kT /h)/Z −1

    

P(x, p;t) = P(1;t)e −E (x ,p)/kT /Z1

Z 1 = dxdp
x B

∞

∫ e −E(x,p)/ kT
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These are the Ma s ter equ a ti ons (Eq . (1.2.86)) for the two - s t a te sys tem . We have ar-
rived at these equ a ti ons by introducing a set of a s su m pti ons for tre a ting the kinet-
ics of a single parti cl e . The equ a ti ons are mu ch more gen era l , s i n ce they say on ly
that there is a ra te of tra n s i ti on bet ween one state of the sys tem and the other. It is
the corre s pon den ce bet ween the two - s t a te sys tem and the moving parti cle that we
h ave establ i s h ed in Eq s . (1.4.38) and (1.4.39). This corre s pon den ce is approx i m a te .
Eq . (1.4.40) does not rely upon the rel a ti onship bet ween EB and the ra te at wh i ch
s ys tems move from one well to the other. However, it does rely upon the assu m p-
ti on that we need to know on ly wh i ch well the sys tem is in to specify its ra te of
tra n s i ti on to the other well . On avera ge this is alw ays tru e , but it would not be a
good de s c ri pti on of the sys tem , for ex a m p l e , i f en er gy is con s erved and the key
qu e s ti on determining the kinetics is wh et h er the parti cle has more or less en er gy
than the barri er EB.

We can solve the coupled equations in Eq. (1.4.40) directly. Both equations are
not necessary, given the normalization constraint Eq.(1.4.34). Substituting P(−1;t) =
1 − P(1;t) we have the equation

(1.4.41)

We can rewrite this in terms of the equilibrium value of the probability. By definition
this is the value at which the time derivative vanishes.

(1.4.42)

where the right-hand side follows from Eq.(1.4.38) and Eq.(1.4.39) and is consistent
with Eq. (1.4.13), as it must be. Using this expression, Eq. (1.4.24) becomes

(1.4.43)

where we have defined an additional quantity

(1.4.44)

The solution of Eq. (1.4.43) is

(1.4.45)

This solution describes a decaying exponential that changes the probability from the
starting value to the equilibrium value. This explains the definition of , called the re-
laxation time. Since it is inversely related to the sum of the rates of transition between
the wells,it is a typical time taken by a system to hop between the wells. The relaxation
time does not depend on the starting probability. We note that the solution of
Eq.(1.4.41) does not depend on the explicit form of P(1; ∞) or . The definitions im-
plied by the first equal signs in Eq.(1.4.42) and Eq.(1.4.44) are sufficient. Also, as can
be quickly checked, we can replace the index 1 with the index −1 without changing
anything else in Eq (1.4.45). The other equations are valid (by symmetry) after the
substitution 1 ↔ −1.

    P(1;t) =(P(1;0)− P(1;∞))e −t / + P(1;∞)

    1/ = (R(1| −1) + R(−1 |1)) = (e −(EB −E1 )/ kT +e −(EB −E−1)/kT )

    
˙ P (1;t) =(P(1;∞)− P(1;t))/

    P(1;∞) = R(−1| 1) /(R(1| −1) + R(−1|1)) = f (E1 − E−1)

    
˙ P (1;t) = R(−1 |1) − P(1;t)(R(1 |−1)+ R(−1|1))

104 I n t r oduc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 104
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 104



There are several intuitive relationships between the equilibrium probabilities
and the transition rates that may be written down. The first is that the ratio of the
equilibrium probabilities is the ratio of the transition rates:

(1.4.46)

The second is that the equilibrium probability divided by the relaxation time is the
rate of transition:

(1.4.47)

Question 1.4.3 Eq. (1.4.45) implies that the relaxation time of the sys-
tem depends largely on the smaller of the two energy barriers EB − E1 and

EB − E−1. For Fig. 1.4.1 the smaller barrier is EB − E1. Since the relaxation time
is independent of the starting probability, this barrier controls the rate of re-
laxation whether we start the system from the lower well or the upper well.
Why does the barrier EB − E1 control the relaxation rate when we start from
the lower well?

Solution 1.4.3 Even though the rate of transition from the lower well to the
upper well is controlled by EB − E−1, the fraction of the ensemble that must
make the transition in order to reach equilibrium depends on E1. The higher
it is,the fewer systems must make the transition from s = −1 to s = 1. Taking
this into consideration implies that the time to reach equilibrium depends
on EB − E1 rather than EB − E−1. ❚

1.4.3 Glass transition
Glasses are materials that when cooled from the liquid do not undergo a conventional
transition to a solid. Instead their viscosity increases,and in the vicinity of a particu-
lar temperature it becomes so large that on a reasonable time scale they can be treated
as solids.However, on long enough time scales,they flow as liquids. We will model the
glass transition using a two-state system by considering what happens as we cool
down the two-state system. At high enough temperatures, the system hops back and
forth between the two minima with rates given by Eqs.(1.4.38) and (1.4.39). is a mi-
croscopic quantity; it might be a vibration rate in the material. Even if the barriers are
higher than the temperature, EB − E±1 >> kT, the system will still be able to hop back
and forth quite rapidly from a macroscopic perspective.

As the system is cooled down, the hopping back and forth slows down. At some
point the rate of hopping will become longer than the time we are observing the sys-
tem. Systems in the higher well will stay there. Systems in the lower well will stay
there. This means that the population in each well becomes fixed. Even when we
continue to cool the system down, there will be no change, and the ensemble will no
longer be in equilibrium. Within each well the system will continue to have a proba-
bility distribution for its energy given by the Boltzmann probability, but the relative

    P1(∞) = R(−1|1)

    P1(∞) P−1(∞) = R(−1|1)/R(1| −1)
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populations of the two wells will no longer be described by the equilibrium
Boltzmann probability.

To gain a feeling for the numbers,a typical atomic vibration rate is 1012/sec. For
a barrier of 1eV, at twice room temperature, kT ≈ 0.05eV (600°K), the transition rate
would be of order 103/sec. This is quite slow from a microscopic perspective, but at
room temperature it would be only 10−6/sec, or one transition per year.

The rate at which we cool the system down plays an essential role. If we cool
faster, then the temperature at which transitions stop is higher. If we cool at a slower
rate, then the temperature at which the transitions stop is lower. This is found to be
the case for glass transitions, where the cooling rate determines the departure point
from the equilibrium trajectory of the system,and the eventual properties of the glass
are also determined by the cooling rate. Rapid cooling is called quenching. If we raise
the temperature and lower it slowly, the procedure is called annealing.

Using the model two - s t a te sys tem we can simu l a te what would happen if we per-
form an ex peri m ent of cooling a sys tem that becomes a gl a s s .F i g. 1.4.2 shows the prob-
a bi l i ty of being in the upper well as a functi on of the tem pera tu re as the sys tem is coo l ed
down . The curves dep a rt from the equ i l i brium curve in the vi c i n i ty of a tra n s i ti on tem-
pera tu re we might call a freezing tra n s i ti on , because the kinetics become frozen . Th e
glass tra n s i ti on is not a tra n s i ti on like a first- or secon d - order tra n s i ti on (Secti on 1.3.4)
because it is a tra n s i ti on of the kinetics ra t h er than of the equ i l i brium stru ctu re of t h e
s ys tem . Bel ow the freezing tra n s i ti on , the rel a tive prob a bi l i ty of the sys tem being in the
u pper well is given approx i m a tely by the equ i l i brium prob a bi l i ty at the tra n s i ti on .

The freezing transition of the relative population of the upper state and the lower
state is only a simple model of the glass transition;however, it is also more widely ap-
plicable. The freezing does not depend on cooperative effects of many particles. To
find examples, a natural place to look is the dynamics of individual atoms in solids.
Potential energies with two wells occur for impurities, defects and even bulk atoms in
a solid. Impurities may have two different local configurations that differ in energ y
and are separated by a barrier. This is a direct analog of our model two-state system.
When the temperature is lowered, the relative population of the two configurations
becomes frozen. If we raise the temperature, the system can equilibrate again.

It is also possible to artificially cause impurity configurations to have unequal en-
ergies.One way is to apply uniaxial stress to a crystal—squeezing it along one axis. If
an impurity resides in a bond between two bulk atoms, applying stress will raise the
energy of impurities in bonds oriented with the stress axis compared to bonds per-
pendicular to the stress axis. If we start at a relatively high temperature, apply stress
and then cool down the material, we can freeze unequal populations of the impurity.
If we have a way of measuring relaxation, then by raising the temperature gradually
and observing when the defects begin to equilibrate we can discover the barrier to re-
laxation. This is one of the few methods available to study the kinetics of impurity re-
orientation in solids.

The two-state system provides us with an example of how a simple system may
not be able to equilibrate over experimental time scales. It also shows how an e qui-
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librium ensemble can be used to treat relative probabilities within a subset of states.
Because the motion within a particular well is fast,the relative probabilities of differ-
ent positions or momenta within a well may be described using the Boltzmann
probability. At the same time, the relative probability of finding a system in each of
the two wells depends on the initial conditions and the history of the system—what
temperature the system experienced and for how long. At sufficiently low tempera-
tures, this relative probability may be treated as fixed. Systems that are in the higher
well may be assumed to stay there. At intermediate temperatures, a treatment of the
dynamics of the transition between the two wells can (and must) be included. This
manifests a violation of the ergodic theorem due to the divergence of the time scale

Ac t i v a te d  p ro c e s se s  ( a n d  g l a s s e s ) 107

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 107
Title: Dynamics Complex Systems Short / Normal / Long

0.00

0.02

0.04

0.06

0.08

0.10

0.12

100 200 300 400 500 600

P(1;∞)

100˚K/sec
200˚K/sec

0.4˚K/sec
…

T

P(1;t)
t

Figure 1.4.2 Plot of the fraction of the systems in the higher energy well as a function of
temperature. The equilibrium value is shown with the dashed line. The solid lines show what
happens when the system is cooled from a high temperature at a particular cooling rate. The
example given uses E1 − E−1 = 0.1eV and EB − E−1 = 1.0eV. Both wells have oscillation fre-
quencies of v = 1012/sec. The fastest cooling rate is 200°K/sec and each successive curve is
cooled at a rate that is half as fast, with the slowest rate being 0.4°K/sec. For every cooling
rate the system stops making transitions between the wells at a particular temperature that
is analogous to a glass transition in this system. Below this temperature the probability be-
comes essentially fixed. ❚
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for equilibration between the two wells. Thus we have identified many of the fea-
tures that are necessary in describing nonequilibrium systems: divergent time scales,
violation of the ergodic theorem, frozen and dynamic coordinates. We have illus-
trated a method for treating systems where there is a separation of long time scales
and short time scales.

Question 1.4.4 Write a program that can generate the time dependence
of the two-state system for a specified time history. Reproduce Fig. 1.4.2.

For an additional “experiment,” try the following quenching and annealing
sequence:

a. Starting from a high enough temperature to be in equilibrium, cool the sys-
tem at a rate of 10°K/sec down to T = 0.

b. Heat the system up to temperature Ta and keep it there for one second.

c. Cool the system back down to T = 0 at rate of 100°K/sec.

Plot the results as a function of Ta. Describe and explain them in words. ❚

1.4.4 Diffusion
In this secti on we bri ef ly con s i der a mu l tiwell sys tem . An example is illu s tra ted in
F i g. 1 . 4 . 3 , wh ere the po ten tial well depths and barri ers va ry from site to site . A simpler
case is found in Fig. 1 . 4 . 4 , wh ere all the well depths and barri ers are the same. A con-
c rete example would be an inters ti tial impuri ty in an ideal crys t a l . The impuri ty live s
in a peri odic en er gy that repeats every integral mu l tiple of an el em en t a ry length a.

We can apply the same analysis from the previous section to describe what hap-
pens to a system that begins from a particular well at x = 0. Over time, the system
makes transitions left and right at random,in a manner that is reminiscent of a ran-
dom walk.We will see in a moment that the connection with the random walk is valid
but requires some additional discussion.
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Figure 1.4.3 Illustration of a multiple-well system with barrier heights and well depths that
vary from site to site. We focus on the uniform system in Fig. 1.4.4. ❚
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The probability of the system being in a particular well is changed by probability
currents into the well and out from the well. Systems can move to or from the well im-
mediately to their right and immediately to their left. The Master equation for the ith
well in Fig. 1.4.3 is:

(1.4.48)

(1.4.49)

where Ei is the depth of the ith well and EB(i + 1|i) is the barrier to its right. For the
periodic system of Fig. 1.4.4 ( i → , EB(i + 1|i) → EB) this simplifies to:

(1.4.50)

(1.4.51)

Since we are already describing a continuum differential equation in time,it is conve-
nient to consider long times and write a continuum equation in space as well.
Allowing a change in notation we write

(1.4.52)

Introducing the elementary distance between wells a we can rewrite Eq. (1.4.50)
using:

(1.4.53)

    

(P(i −1;t)+ P(i + 1;t) − 2P(i;t))

a2

→
(P(xi − a;t)+ P(xi + a;t) − 2P(xi ;t))

a2
→

2

x 2
P(x ;t)

    P(i;t) →P(xi ;t)

    R = e − (E B− E 0) /kT

    
˙ P (i;t) = R(P(i −1;t)+ P(i + 1;t) − 2P(i ;t))

    

R(i + 1|i) = ie
−(EB (i +1|i )−Ei )/kT

R(i − 1|i) = ie
−(EB (i|i−1)−Ei )/kT

    
˙ P (i;t) = R(i |i − 1)P(i − 1;t) + R(i |i +1)P(i +1;t) −(R(i + 1|i) + R(i −1 |i))P(i;t)

Ac t i v a t e d  p ro c e s s e s  ( a nd  g l a s se s ) 109

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 109
Title: Dynamics Complex Systems Short / Normal / Long

0 1 2-1

E0

V(x)

x

EB

Figure 1.4.4 When the barrier heights and well depths are the same, as illustrated, the long
time behavior of this system is described by the diffusion equation. The evolution of the sys-
tem is controlled by hopping events from one well to the other. The net effect over long times
is the same as for the random walk discussed in Section 1.2. ❚
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where the last expression assumes a is small on the scale of interest. Thus the contin-
uum version of Eq. (1.4.50) is the conventional diffusion equation:

(1.4.54)

The diffusion constant D is given by:

(1.4.55)

The solution of the diffusion equation, Eq. (1.4.54), depends on the initial con-
ditions that are chosen. If we consider an ensemble of a system that starts in one well
and spreads out over time, the solution can be checked by substitution to be the
Gaussian distribution found for the random walk in Section 1.2:

(1.4.56)

We see that motion in a set of uniform wells after a long time reduces to that of a ran-
dom walk.

How does the similari ty to the ra n dom walk arise? This might appear to be a nat-
u ral re su l t ,s i n ce we showed that the Gaussian distri buti on is qu i te gen eral using the cen-
tral limit theorem . The scen a rio here ,h owever, is qu i te differen t . The cen tral limit the-
orem was proven in Secti on 1.2.2 for the case of a distri buti on of prob a bi l i ties of s tep s
t a ken at specific time interva l s . Here we have a time con ti nu u m . Hopping events may
h a ppen at any ti m e . Con s i der the case wh ere we start from a particular well . Our differ-
en tial equ a ti on de s c ri bes a sys tem that might hop to the next well at any ti m e . A hop is
an even t , and we might con cern ours elves with the distri buti on of su ch events in ti m e .
We have assu m ed that these events are uncorrel a ted .Th ere are unphysical con s equ en ce s
of this assu m pti on . For ex a m p l e , no matter how small an interval of time we ch oo s e ,t h e
p a rti cle has some prob a bi l i ty of traveling arbi tra ri ly far aw ay. This is not nece s s a ri ly a
correct micro s copic pictu re , but it is the con ti nuum model we have devel oped .

There is a procedure to convert the event-controlled hopping motion between
wells into a random walk that takes steps with a certain probability at specific time in-
tervals. We must select a time interval. For this time interval, we evaluate the total
probability that hops move a system from its original position to all possible positions
of the system. This would give us the function f (s) in Eq.(1.2.34). As long as the mean
square displacement is finite,the central limit theorem continues to apply to the prob-
ability distribution after a long enough time. The generality of the conclusion also im-
plies that the result is more widely applicable than the assumptions indicate.However,
there is a counter example in Question 1.4.5.

Question 1.4.5 Discuss the case of a parti cle that is not in con t act with a
t h ermal re s evoir moving in the mu l tiple well sys tem (en er gy is con s erved ) .

    

P(x,t) =
1

4 Dt
e −x

2
/4Dt =

1

2
e −x

2
/2

2

= 2Dt

    D = a 2R = a 2 e −(EB −E0)/ kT

    

˙ P (x;t) = D
2

x 2
P(x;t)
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Solution 1.4.5 If the energy of the system is lower than EB , the system stays
in a single well bouncing back and forth. A model that describes how tran-
sitions occur between wells would just say there are none.

For the case where the energy is larger than EB, the system will move
with a periodically varying velocity in one direction. There is a problem in
selecting an ensemble to describe it. If we choose the ensemble with only
one system moving in one direction, then it is described as a deterministic
walk. This description is consistent with the motion of the system.
However, we might also think to describe the system using an ensemble
consisting of particles with the same energy. In this case it would be one
particle moving to the right and one moving to the left. Taking an interval
of time to be the time needed to move to the next well, we would find a
transition probability of 1/2 to move to the right and the same to the left.
This would lead to a conventional random walk and will give us an incor-
rect result for all later times.

This example illustrates the need for an assumption that has not yet been
explicitly mentioned. The ensemble must describe systems that can make
transitions to each other. Since the energy-conserving systems cannot switch
directions, the ensemble cannot include both directions. It is enough, how-
ever, for there to be a small nonzero probability for the system to switch di-
rections for the central limit theorem to apply. This means that over long
enough times, the distribution will be Gaussian. Over short times,however,
the probability distribution from the random walk model and an almost bal-
listic system would not be very similar. ❚

We can generalize the multiple well picture to describe a biased random walk.
The potential we would use is a “washboard potential,” illustrated in Fig. 1.4.5. The
Master equation is:

(1.4.57)

(1.4.58)

To obtain the continuum limit, replace i → x : P(i + 1;t) → P(x + a,t), and
P(i − 1;t) → P(x − a,t), and expand in a Taylor series to second order in a to obtain:

(1.4.59)

(1.4.60)

    D = a 2(R+ + R− )/2

      v = a(R+ − R−)

      

˙ P (x;t) = −v
x

P(x ;t) + D
2

x 2
P(x ;t)

    

R+ = ie
− E+ /kT

R− = ie
− E− /kT

    
˙ P (i;t) = R+ P(i − 1;t) + R−P(i +1;t)− (R+ + R− )P(i;t)
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The solution is a moving Gaussian:

(1.4.61)

Since the description of diffusive motion always allows the system to stay where it is,
there is a limit to the degree of bias that can occur in the random walk. For this limit
set R− = 0. Then D = av/2 and the spreading of the probability is given by = √avt.
This shows that unlike the biased random walk in Section 1.2, diffusive motion on a
washboard with a given spacing a cannot describe ballistic or deterministic motion in
a single direction.

Cellular Automata

The first four sections of this chapter were dedicated to systems in which the existence
of many parameters (degrees of freedom) describing the system is hidden in one way
or another. In this section we begin to describe systems where many degrees of free-
dom are explicitly represented. Cellular automata (CA) form a general class of mod-
els of dynamical systems which are appealingly simple and yet capture a rich variety
of behavior. This has made them a favorite tool for studying the generic behavior of
and modeling complex dynamical systems. Historically CA are also intimately related
to the development of concepts of computers and computation. This connection con-
tinues to be a theme often found in discussions of CA. Moreover, despite the wide dif-
ferences between CA and conventional computer architectures,CA are convenient for

1.5

      

P(x,t) =
1

4 Dt
e −(x−vt )

2
/ 4Dt =

1

2
e −(x−vt )

2
/2

2

= 2Dt
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Figure 1.4.5 The biased random walk is also found in a multiple-well system when the illus-
trated washboard potential is used. The velocity of the system is given by the difference in
hopping rates to the right and to the left. ❚
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