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Like other social systems, corporations comprise networks of individuals that share information and create interdependencies
among their actions. +e properties of these networks are crucial to a corporation’s success. Understanding how individuals self-
organize into teams and how this relates to performance is a challenge for managers andmanagement software developers looking
for ways to enhance corporate tasks. In this paper, we analyze functional and social communication networks from industrial
production plants and relate their properties to performance. We use internal management software data that reveal aspects of
functional and social communications among workers. We found that distinct features of functional and social communication
networks emerge. +e former are asymmetrical, and the latter are segregated by job title, i.e., executives, managers, supervisors,
and operators. We show that performance is negatively correlated with the volume of functional communications but positively
correlated with the density of the emerging communication networks. Exposing social dynamics in the workplace matters given
the increasing digitization and automation of corporate tasks and managerial processes.

1. Introduction

Corporations are complex systems comprising dynamic
social networks where information flows across organiza-
tional structures [1–5]. People organize their activities in
corporations such that collective goals can be achieved.
Communication is key for establishing interdependencies
among individual actions, which include the assignment of
tasks from managers to workers, reports from workers to
managers, and cross communication in informal settings
[2]. +e way people choose to communicate and the in-
formation they share influence the structure of the emerging
social networks [6]. Visualizing and analyzing the structure
of these networks is crucial for understanding the func-
tioning of the social system and intervening to foster efficient
behaviors [7, 8].

+e introduction of automation and software to organize
and conduct corporate work creates the opportunity to
observe and characterize the structure of corporations’ social
networks through data [6]. By using software to assign work

orders, schedule meetings, and exchange messages, users
leave traces in data that reveal the corporation’s patterns of
self-organization [9–11]. Corporations comprise teams, and
teams comprise individuals. Understanding how individuals
aggregate into teams, and how teams form corporations, is
essential to maintaining cohesion and improving perfor-
mance at scale [12–14].

Corporations can become more complex either because
they grow in size or in the variety of services they supply
[15, 16]. In this process, their substructure becomes more
important to their performance [5, 13, 17]. According to
Ashby’s law of requisite variety, systems must match the
complexity of their environment in order to be successful
[18, 19]. By coalescing into teams, assuming specialized
roles, and creating interdependencies among each other,
individuals gain collective capabilities that exceed their own
and can respond to the increasing demands [20]. +e
complementary array of behaviors that emerge from indi-
viduals associating into teams is key for building effective
corporations [21].
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Fundamentally, teams are groups of people that work
together and communicate with each other. Communica-
tion is the basis for creating and maintaining trust and
satisfaction among team members [22]. Team communi-
cation falls into two overarching categories: functional and
social communications [2, 4, 8, 23]. Functional communi-
cations, such as task lists and scheduled meetings, are how
work is officially organized and done [2]. Social commu-
nications, such as chatting online, act as a kind of scaffold for
functional communication by igniting and fortifying social
relations and the benefits associated with them for the in-
dividual and the group [24]. While they are not intentionally
planned, they are essential to a well-functioning corporation.
Understanding the function and interplay of these two
channels of communication is essential to understanding
what makes a team cohesive and more productive
[2, 4, 5, 12].

In this paper, we analyze data from a management
software company in industrial settings and construct and
characterize their functional and social communication
networks. We characterize users and teams by their indi-
vidual and collective behaviors, namely, how they organize
work (functional communications) and chat with each other
on the software platform (social communications). We
identify patterns of the network structure, such as asym-
metries and lateral communications, and analyze patterns
that improve or degrade team efficacy.

We show that functional networks are asymmetrical
and social communication networks are segregated by
role or job title. We can observe the difference in behavior
in Figure 1. Companies are shown by two dots repre-
senting functional (blue) and social (orange) communi-
cation networks. +e x-axis represents degree
assortativity, and the y-axis represents job-title assorta-
tivity (see Sections 4 and 5 for more details). Negative
degree assortativity indicates asymmetry of interactions,
and positive job-title assortativity indicates segregation by
role. In the majority of cases, the two types of networks are
clearly in separate regions of the space.

+is paper is organized as follows: In Section 2, we
discuss the related work. In Section 3, we discuss the dataset
we analyzed. In Section 4, we explain how we construct
functional and social networks and show their properties. In
Section 5, we compare the structure of both networks, and in
Section 6, we compare their dynamical behavior. In Section
7, we analyze their relationship to efficacy. Finally, in Section
8, we present our conclusions.

2. Related Works

+e literature on the implications of functional and social
communication patterns on team performance includes
many types of corporations and areas. Some studies propose
that functional communication is related to productivity
[25], while others report that managers disregard formal
contacts to a surprising extent [4].+e rise in complexity has
been shown to be related to a decline in hierarchical
structures [21]. However, other studies claim that hierar-
chies persist [5]. Social communications have also been

analyzed in work settings. +ey may replace formal com-
munication in the context of uncertainty [26]. +e cohesion
of face-to-face social networks has been positively associated
with higher worker productivity, while the opposite is true in
email communication [27]. In other settings, social ties have
been observed vertically [4]. +e information provided by
formal communications might ease managers’ activities,
while employees might prefer to communicate informally
[25].

+e analysis of team dynamics and performance has
been relevant in multiple contexts, including work set-
tings [28], international organizations [29], military [30],
sports [31], and gaming [32]. +ese studies show that team
performance depends on communication among mem-
bers and other teams [33–37]. Either within or across
teams, the networked structure of both formal and in-
formal social relationships can improve information
flows, facilitate the coordination of activities, and result in
better performance [28]. +e more evenly the team
members communicate with each other, the better the
teams seem to perform [38]. A more recent study using
electronic badges to measure interpersonal communica-
tion across startups found that the amount of commu-
nication correlates with better performance, though too
much communication with other teams seems to be
detrimental [39].

+ese studies either are qualitative or lack the detailed,
fine-grained interaction data as the one we analyze in this
paper. For example, while sensors may reveal offline
communication patterns, the data collected from such
methods cannot differentiate between formal and informal
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Figure 1: Degree and job-title assortativity coefficients of func-
tional and social communication networks for all enterprises. Each
company is shown by two dots representing functional (blue) and
social (orange) communication networks. Negative degree assor-
tativity indicates asymmetry of interactions, and positive job-title
assortativity indicates segregation by role.
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communications. Understanding the role of these two
different types of interactions regarding team performance
is crucial for creating the right environmental conditions
for workers to develop their activities. Moreover, previous
studies generally lack the opportunity to observe multiple
companies together and usually include single case studies,
which limits the possibility to generalize results.

3. Data

We analyze anonymized communication data from a
management software platform that organizes work in
industrial settings. +e software integrates in a single
platform both the assignment of work orders, which we
define as functional communications, and social interac-
tions among workers and team members in the form of
online chats. +ese online chats are generally used by
workers to informally coordinate their activities during
work hours. In total, we analyze the behavior of 38,137
distinct users from 197 factories over a period of five years
(2013–2018). +e distribution of factories’ life-span in the
platform is shown in SupplementaryMaterials (Section S1).
Interactions include work-order assignment for functional
communications and chats for social communications.
Work orders have a creator and a target. Chats occur as a
sequence of messages populated freely by workers and team
members.

4. Functional and Social
Communication Networks

We first analyze the structure of functional communication
networks by extracting the assignment of work orders from
each enterprise’s historical data. We create one network for
each enterprise. Nodes represent users, and edges represent
work-order assignments. Edges are directed from the work-
order creator to the assigned user and weighted by the total
number of interactions between each pair of users. Figure 2
shows network visualizations of select enterprises’ functional
communication networks (other enterprises are shown in
Section S2). Users have been colored by their job title: ex-
ecutives in red, managers in dark blue, supervisors in orange,
and operators in light blue.

Functional communication networks are characterized
by a hub-spoke structure, which consists of a dense core of
users assigning work orders out to users in a radial pe-
riphery. +e core users are generally higher ranked than the
peripheral users. While the former distribute orders among
core and peripheral users, the latter seem to only com-
municate with their superiors.

An alternative method for visualizing a network’s in-
teraction patterns is the adjacency matrix. Adjacency ma-
trices show the interactions between any pair of users
organized in rows and columns. Figure 3 shows adjacency
matrices of the select enterprises’ functional communication
networks presented in Figure 2. Users have been sorted by
their job title and their number of work-order assignments.
Row users are sending work orders, while column users
are receiving them. +e color (from white to black) is

proportional to the log value of the number of interactions
between any pair of users. +ese adjacency matrices are
characterized by their sparsity and streaking horizontal lines,
which indicate most users are not assigning work orders, but
receiving them.+is pattern is consistent with the hub-spoke
structure in Figure 2. Core users appear as horizontal
streaks, while peripheral users account for the matrices’
sparsity. Moreover, core users’ horizontal streaks slice
through all job titles.

A user’s interaction pattern indicates their role in the
enterprise. Figure 4 shows in-degree vs out-degree scatter
plots of select enterprises’ functional communication net-
works. Dots represent users, and colors are consistent with
their job titles. In-degree (x-axis) measures the number of
work orders a user receives, and out-degree (y-axis) mea-
sures the number of work orders a user assigns. Users above
the diagonal assign more work orders than they receive.
+ese users have leading roles and appear central in the
network visualizations shown in Figure 2. Users below the
diagonal receive more work orders than they assign and, in
the same figure, appear peripheral. In general, there are more
users below the diagonal than above it, which shows that a
few leaders account for most workers’ work orders. In some
cases, such as panels (a) and (i), a clear distinction between
job titles or roles in teams manifests.

In order to analyze social communication networks, we
extract the exchange of messages from each enterprise’s
historical chat data. +ese chats take place within the
management software platform and create the space for
workers and team members to interact and exchange in-
formation about their ongoing activities and work orders.
We create one network for each enterprise. Nodes repre-
sent users, and edges represent exchanged messages. Edges
are directed from the message sender to the recipient and
weighted by the total number of exchanges between each
pair of users. Figure 5 shows network visualizations for the
select enterprises’ social communication networks. Other
enterprises are shown in Section S2. Users have been
colored by their job title: executives in red, managers in
dark blue, supervisors in orange, and operators in light
blue.

Social communication networks are characterized by
groups. For example, in Figures 5(b), 5(c), and 5(g), a clear
preference of users to interact with those with a similar job
title manifests, specifically in managers with managers and
operators with operators. We visualize the group structure
of these networks with their adjacency matrices in a fashion
similar to that in Figure 3, but here we sort users based on
the agglomerative clusters they create as they interact.
Figure 6 shows the clustered adjacency matrices of the
select enterprises’ social communication networks pre-
sented in Figure 5. +e number of clusters generally cor-
responds to the groups observed in the networks of
Figure 5. In panels (a), (b), and (c), clusters are clearly
visible in both the network and the matrices. In some cases,
the matrices reveal groups that are not apparent (e.g., panel
(f )). +is result contrasts the previous study [4], which
states social ties are more likely to be made vertically than
horizontally.
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5. Comparing Functional and Social
Communication Networks

We compare functional and social communication networks
by analyzing multiple network features. +ese features
summarize the network structure as scalar values we can use
to compare types of communications within and across
companies. Specifically, we study the following network
properties: the number of nodes (users), number of edges

(communications), density, average clustering coefficient,
inequality in connections (measured via the Gini coefficient
of the degree distribution), and assortativity by degree and
job title. We calculate these metrics for each network and
analyze their distribution across all enterprises. +e results
are presented in Figure 7, and a set of statistical tests is
shown in Table 1.

We measure the density of the network as the relative
number of existing edges with respect to all those possible.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2: Visualization of functional communication networks from select enterprises. Distinct networks represent different enterprises.
Nodes are user colored by their role (red is for an executive, dark blue is for a manager, orange is for a supervisor, and light blue is for an
operator). Directed edges are work orders. Networks have a hub-spoke shape, consisting of a middle core and a radial periphery. Nodes were
positioned using the Fruchterman–Reingold force-directed algorithm [40]. Other enterprises are shown in Section S2.
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Density values lie between 0 and 1 and show how dense or
sparse networks are. +e networks emerging from social
communications seem to be denser than the ones arising
from functional interactions (Figure 7(c)). +is is con-
sistent with the network visualizations and matrices
shown in Figures 2–6. +e radial topology of functional
networks creates a less dense structure than the clustered
groups of social communications. Correspondingly, the
average clustering coefficient in social communication

networks is higher than that in functional ones (Figure 7(d)).
+e clustering coefficient counts the relative number of tri-
angular connections with respect to all those possible. It also
goes from 0 to 1 and shows that functional networks are less
cohesively connected than social communications.

Functional networks are more centralized. We measure
centralization via the Gini coefficient of the degree distri-
bution for all networks (Figure 7(e)). +e Gini coefficient of
the degree distribution quantifies the unequal concentration

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3: Adjacency matrices of functional communication networks from select enterprises. Color intensity indicates the log value of the
weighted number of edges. Horizontal and vertical lines divide matrices into labeled, role-specific sections (red is for an executive, dark blue
is for a manager, orange is for a supervisor, and light blue is for an operator). Diagonal squares are areas of intrarole communication, and
others are areas of interrole communication. Adjacency matrices are sparse and distinguished by their streaking horizontal lines. Other
enterprises are shown in Section S2.
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of edges among highly connected nodes. It also ranges
between 0 and 1, with 0 being the case where connections are
equally distributed among all nodes and 1 being the case
where the most connected node gathers all possible con-
nections. +is metric is often used to estimate income in-
equality. In this case, the Gini coefficient of functional
networks is consistently higher than the one from social
communications, which suggests that functional networks
seem to be more hierarchical.

We also analyzemixing patterns such as an asymmetrical
structure and preference of users to segregate interactions
based on job title. We quantify such mixing patterns using
assortativity [43], which measures the tendency of nodes to
be connected to those that are similar. For an asymmetrical
structure, we measure the tendency of nodes to be con-
nected based on their degree. For segregation, we measure
the tendency of nodes to be connected based on their job
title.
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Figure 4: In-degree vs out-degree scatter plots of functional communication networks from select enterprises. Dots are user colored by their
role (red is for an executive, dark blue is for a manager, orange is for a supervisor, and light blue is for an operator). Dots above the diagonal
are users that assign more work orders than they receive. Dots below the diagonal are users that receive more work orders than they assign.
Dots near the diagonal are users that assign approximately as many work orders as they receive.
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Assortativity by degree measures the similarity of con-
nections in the network with respect to node degree by
calculating the Pearson correlation of degrees at each end of
the edges. Positive assortativity means that nodes are linked
to those with a similar degree of connectivity. Negative
assortativity indicates that highly connected nodes are linked
to poorly connected ones. If the correlation is zero, it

indicates that connections are drawn independently. In
Figure 7(f ), we show the histogram of the assortativity by
degree coefficient of all enterprises and both types of
communication networks (blue for functional and orange
for social). Functional communication networks have a
negative assortativity by degree, while social ones have no
correlation. +is shows that functional communication

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Visualization of social communication networks from select enterprises. Distinct networks represent different enterprises. Nodes
are user colored by their role (red is for an executive, dark blue is for a manager, orange is for a supervisor, and light blue is for an operator).
Edges are directed and represent messages in online chats. Other enterprises are shown in Section S2.
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networks are more asymmetrical than social ones. +is is
related to the hub-spoke structure in Figure 2 and reflects the
organization of leadership in the enterprise. Previous work
shows that networks of acquaintances, sexual interactions,
and celebrities generally show positive assortativity by de-
gree [43], which demonstrates that the functional com-
munication networks in enterprises are not behaving like
regular social networks. Moreover, it has been reported that

asymmetrical communication structures persist in organi-
zations, especially in more traditional ones [5].

We measure the segregation of interactions by job title
using assortativity by attribute (the attribute being job
title). Positive values show segregation of interactions by
job title, while zero shows no correlation. In Figure 7(g),
we show that social networks (orange) are much more
segregated by job title than functional networks, where

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 6: Clustered adjacency matrices of social communication networks from select enterprises. Color intensity indicates the log value of
the number of weighted edges. Nodes are sorted using an agglomerative clustering algorithm [41, 42]. +e dendrogram representing the
sorting results is shown together with its respective matrices.
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work orders are assigned across different types of em-
ployees. +is is consistent with the horizontal streaks
present in the matrices of Figure 3.

We estimate the significance of the differences among
distributions arising from functional and social communica-
tion networks by performing a set of statistical tests on each
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Figure 7: Properties of functional (blue) and social (orange) communication networks for all enterprises. (a) Distributions of a number of
users. (b) Distributions of a number of communications. (c) Distribution network density. (d) Distribution of average clustering. (e)
Distribution of Gini coefficients of the degree distributions. (f ) Distribution of degree assortativity coefficients. Negative values indicate
asymmetrical interactions. (g) Distribution of job-title assortativity coefficients. Positive values indicate segregated interactions. A set of
statistical tests comparing these distributions is shown in Table 1.
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network feature. In particular, we apply (i) the Kolmogor-
ov–Smirnov test to measure whether the feature distributions
of functional and social networks are the same and (ii) Welch’s
t-test to measure the difference between their averages. +e
results are presented in Table 1. Both the distributions and
averages significantly differ among both types of networks
across all features (p< 0.001 in all cases, with the exception of
the Gini coefficient for social networks, where p< 0.05).

6. Dynamics of Network Metrics

We analyze the dynamics of functional and social commu-
nication networks by calculating the evolution of network
features over time. We calculate these metrics cumulatively
for each network at each month. +e monthly data are then
normalized into ten equally spaced bins between each
company’s earliest and oldest work orders. In Figure 8, we
present the average curve across all companies and error bars
representing the standard error for each feature.

Figures 8(a) and 8(b) show the distributions of network
size in terms of users and edges over time. For both types of
networks, the number of users grows linearly, while the
number of communications grows supralinearly. +e dif-
ferent growth rates between population and interactions
are consistent with scaling laws of human behavior [44].
Just like communication in cities and other social systems
[45], the number of possible interacting individuals increases
explosively due to a combinatoric effect of the existing pop-
ulation. As systems grow, the number of combinations in-
creases much faster than the number of elements. Similar
scaling laws have explained GDP growth and technological
innovation [46]. In terms of management, it shows that the
number of possible teams that can arise from a set of workers
grows faster than the size of the company [16].

+rough time, social communication networks seem to
be more cohesive than functional networks, which is shown
in a consistently higher network density (Figure 8(c)) and
average clustering coefficient (Figure 8(d)). Although seem-
ingly converging, the network density slightly decreases over
time which can be due to the addition of new users to the

platform. On the other side, the average clustering seems to
rapidly converge over time and remain stable.

+e average Gini coefficient increases over time among
both functional and social communication networks. +is
means that new connections disproportionally originate or
are directed to those nodes that already account for a large
number of connections. While such a principle is related to
the rich-get-richer mechanism [7], the values we obtain are
considerably higher than artificial Barabasi–Albert or real
friends’ networks [47]. Moreover, consistently with the results
presented in Section 5, the Gini coefficient of functional
networks is always higher than that of social communications
(Figure 8(e)), indicating that, at every point in time, most
functional networks are more centralized.

Figure 8(f) shows the assortativity by degree coefficient of
all enterprises over time. Across the whole observation period,
functional communication networks have a negative assor-
tativity by degree, while social ones have no correlation. +is
shows that functional communication networks are consis-
tently more asymmetrical than social communication net-
works. On the contrary, Figure 8(g) shows that social
networks (orange) are increasingly more segregated by job
title than functional ones. While the segregation by job title in
functional networks stays roughly uncorrelated, social net-
works become more and more segregated over time. +is
shows that functional networks are used for communication
across layers of the organization, while social communication
is used among team members of similar level.

In order to further analyze the group structure in
functional and social communication networks, we calculate
the average number of communications over time among the
different job titles and across all companies. Results for social
communications are shown in Figure 9 and for functional
communications in Figure 10. In both figures, (a) to (d) show
communications originated from supervisors, managers,
operators, and executives, respectively. In each panel, orange,
blue, light blue, and red lines show communications being
received by supervisors, managers, operators, and executives,
respectively. In social networks, the number of segregated
communications by job title increases remarkably faster than
the number of crossed interactions (Figure 9). In the case of
supervisors (Figure 9(a)), such an increase seems to be linear,
while in the case of managers (Figure 9(b)) and operators
(Figure 9(c)), the number of segregated communications
seems to accelerate in time. On the contrary, the segregation
of formal communications is not analogous. In this case, top-
down communications seem to be more (or just as) relevant
as the segregated interactions.

7. Characterizing Enterprise Efficacy

In order to determine how functional and social commu-
nication network patterns influence enterprise efficacy, we
define a score per enterprise based on the timely completion
of their work orders. We define a work order’s score
according to the following equation:

si �
di − ci

di − ai

, (1)

Table 1: Statistical tests comparing the distributions of network
features from functional and social communication networks. +e
Kolmogorov–Smirnov (KS) test measures whether samples come
from the same distribution. Welch’s t-test is two-sided and mea-
sures whether two distributions have the same average. +e dis-
tributions and averages significantly differ among functional and
social communication networks across all features.

Feature
KS test Welch’s t-test

Test
value p value Test

value p value

No. of users 0.25 1.53e− 05 5.53 7.194e – 08
No. of
communications 0.43 2.34e− 16 5.96 1.22e – 08

Average clustering 0.31 2.93e− 08 −7.31 1.77e – 12
Job-title assortativity 0.95 3.12e− 95 −39.59 7.76e – 136
Degree assortativity 0.74 1.55e− 15 −20.70 1.38e – 64
Gini coefficient 0.25 1.53e− 05 1.96 0.05
Density 0.39 5.84e− 13 −9.13 1.11e – 17
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Figure 8: Dynamics of properties of functional (blue) and social (orange) networks for all enterprises. (a) No. of users per functional and
social networks over time. (b) No. of communications per functional and social networks over time. (c) Density per functional and social
networks over time. (d) Average clustering per functional and social networks over time. (e) Gini coefficients for functional and social
networks’ degree distributions over time. (f ) Degree assortativity for functional and social networks over time. (g) Job-title assortativity for
functional and social networks over time. Error bars indicate the standard error.
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where ai is the time when the work order i was assigned,
di is the time it was due, ci is the time it was completed,
and si is the resulting score. A negative score indicates

the work order was completed earlier than scheduled, a
positive score indicates the work order was completed
late, and a score of zero indicates the work order was
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Figure 9: Average number of level-to-level communications of social networks over time for all enterprises. (a–d) Communications
originated by supervisors, managers, operators, and executives, respectively. Orange, blue, light blue, and red lines show communications
directed to supervisors, managers, operators, and executives, respectively. Error bars indicate the standard deviation. An analogous plot for
formal communications is shown in Figure 9.
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completed on time. In general, lower scores indicate
better efficacy.

We analyze efficacy on monthly basis. We aggregate
enterprises’ work orders per month and calculate their

median score. Efficacy varies across enterprises.
Figure 11(a) shows the time series of the efficacy score for
companies that have been active for at least one year. In
general, companies go through a transition period before
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Figure 10: Average number of level-to-level communications of functional networks over time for all enterprises. (a–d) Communications
originated by supervisors, managers, operators, and executives, respectively. Orange, blue, light blue, and red lines show communications
directed to supervisors, managers, operators, and executives, respectively. Error bars indicate the standard deviation. An analogous plot for
social communications is shown in Figure 9.
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stabilizing their score. Figure 11(b) shows the distribu-
tion of enterprises’ monthly scores over the last year of
activity where the behavior is mainly stable. +e distri-
bution is bimodal, with a peak just below zero and an-
other, more prominent peak between zero and one. Since
a score of si � 0 indicates that the work order is done on
time, the smaller peak below zero is enterprises that are
completing the majority of their work orders early. +e
larger peak between zero and one indicates that most
enterprises are completing a majority of their work or-
ders late. A score of si � 1 indicates that the work order
took 100% or more of the time allotted. +e tail trailing

behind the first peak comprises a small set of effective
enterprises.

We correlated monthly network features with the cor-
responding scores for each enterprise in order to determine
the influence of each property on efficacy. We consider only
the last twelve months of activity. Analogously with scores,
network features are also calculated on the monthly basis
without aggregating edges across months. We characterize
each corporation with the following network properties for
both functional and social interactions: the number of nodes
(users), number of edges (communications), average clus-
tering, assortativity by degree and job title, inequality in
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Figure 11: Efficacy score for selected enterprises. (a) Efficacy score time series of enterprises with at least one year of activity. (b)
Distribution of the monthly efficacy score over the last year of activity.
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connections (measured via the Gini coefficient of the degree
distribution), and density. In Table 2, we present the cor-
relation of these features with the scores. A negative cor-
relation indicates an improvement of efficacy, and a positive
correlation shows a deterioration. Missing correlations are
not statistically significant.

+e number of users in both functional and social
communication networks is correlated with inefficacy
(positive correlation coefficient with the score), which may
mean that larger corporations perform worse than smaller
ones. Analogously, the number of functional communi-
cations is associated with a worse efficacy, which can be
related to the size of the company, but may also indicate
that adverse times require more communication for
completing tasks. Inequality in functional interactions and
the degree assortativity of social networks correlate posi-
tively with the score, meaning that more asymmetrical
networks are associated with inefficacy. Efficacy is instead
associated with the density of the networks. Density cor-
relates negatively with the score, meaning that effective
teams are characterized for having a larger number of
interacting individuals. +is is also reflected in the average
clustering of social networks. +e correlation of other
metrics with the score does not seem to be statistically
significant. An analogous analysis applied to the average
behavior over time rather than the monthly breakdown is
shown in Supplementary Materials (Section S3).+e results
are consistent.

Finally, we study the aggregate structure of the data by
applying principal component analysis (PCA) to enter-
prises based on functional and social communication
monthly network features including the corresponding
score. +e PCA is calculated by constructing a matrix
where rows are monthly observations of enterprises and
columns represent the corresponding network features and
score. +is analysis enables the decomposition of the
manifold in a reduced set of new dimensions that show
dominant behaviors. Components are ordered by the
amount of variance they explain. In this case, the two main
components explain up to 77% of the variance. In Table 3,
we show the coefficients of network features and score in

each component. +e first component (PC-1) is dominated
by the number of functional communications, and the
second component (PC-2) is dominated by the number of
social communications. In both cases, the components are
in the inverse direction of the number of communications,
meaning that features in the direction of the component are
inversely proportional to the number of communications.
Good scores are in the direction of the first component, and
bad scores are in the direction of the second component.
Similarly, network density and average clustering in social
communications increase in the direction of the first
component and decrease in the direction of the second.
+is shows that effective companies are characterized for
having less functional communication and higher social
communication—especially in terms of the density and
clustering of connections.

In order to understand these composite relationships, we
present scatter plots of the two main components in Fig-
ure 12. Each dot is a company at a given month, and the
location in the scatter plot shows the dot product of the
company’s feature vector and the corresponding component
(PC-1 in the x-axis and PC-2 in the y-axis). Panels are
colored by different features (see titles). We identify three
regions in the space. Region A corresponds to big companies
(red and green dots in panels (a) and (e)). Region B shows
effective companies (blue dots in panel (i)). Region C shows
ineffective companies (red dots in panel (i)). Big companies
in region A are generally more ineffective than smaller
companies in regions B and C. Effective companies in region
B are characterized for having lower functional communi-
cation (blue in panel (b)) and varied number of social
communications (from red to blue in panel (f )). +ey also
have higher density in both types of networks (red in panels
(c) and (g)) and higher clustering in social communication
networks (red in panel (h)). Ineffective companies in region
C are characterized for having a higher number of functional
communications, lower number of social communications,
and lower density and clustering coefficient in social net-
works. More features are presented in Supplementary Ma-
terials (see Section S4).

+ese results show that certain social behaviors may be
associated with efficacy in industrial settings. In particular,

Table 2: Correlation coefficients of functional and social com-
munication network features with the efficacy score. Positive co-
efficients indicate that the feature correlates with a worse score.
Negative coefficients indicate that the feature correlates with a
better score. +e number of users and that of communications are
in the logarithmic scale. Correlations coefficients are significant
(p< 0.001). Not significant coefficients are not shown.

Network
Functional Social

No. of users 0.27 0.20
No. of communications 0.27 —
Average clustering — −0.17
Degree assortativity — 0.17
Job-title assortativity 0.26 —
Gini coefficient 0.17 —
Density −0.11 −0.23

Table 3: Principal component analysis (PCA) of functional and
social communication networks and efficacy score. Coefficients of
each feature for the first (PC-1) and second (PC-2) components are
shown. Together, the main two components explain up to 76% of
the variance (explained variance by component in parentheses).

PC-1 (55%) PC-2 (21%)
Functional Social Functional Social

No. of users −0.26 −0.19 −0.05 −0.18
No. of communications −0.91 −0.23 0.28 −0.91
Average clustering −0.02 0.01 −0.04 −0.12
Degree assortativity 0.01 −0.01 0.03 0.02
Job-title assortativity −0.01 −0.04 0.08 −0.16
Gini coefficient −0.05 −0.03 0.01 −0.04
Density 0.02 0.05 −0.002 −0.03
Efficacy score −0.10 0.08
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excessive functional communication can be detrimental for
timely completion of tasks and digital social interactions
may be beneficial. However, being effective on finishing
work orders is not necessarily equivalent to improving la-
bour productivity in terms of volume produced in labour
hours, which is out of the scope of this study. A further
investigation of the relationship between human dynamics

and other labour productivity measures is still necessary for
advancing such understanding.

8. Conclusion

We constructed and characterized digitized functional and
social communication networks from industrial production

–2

–1 0 1

0 2 4
PC-1

PC
-2

6 8

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(a)

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(b)

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(c)

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(d)

–1 0 1

–2 0 2 4
PC-1

6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(e)

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(f )

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(g)

–1 0 1

PC-1
–2 0 2 4 6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(h)

–1 0 1

–2 0 2 4
PC-1

6 8

PC
-2

4
3
2
1
0

–1
–2
–3

(c)

(b)

(a)

(i)

Figure 12: Principal component analysis (PCA) of enterprises based on functional and social communication monthly network features
including the corresponding efficacy score. Dots represent individual companies at particular months. +eir location in the scatter plots
shows the dot product of the company’s feature vector and the corresponding component (PC-1 in the x-axis and PC-2 in the y-axis). Panels
are colored by different features (see titles). Features have been normalized by subtracting the average and dividing by the standard deviation
(scale on figure). +e number of functional and social communications is in the logarithmic scale. Regions (A), (B), and (C) indicate the
location of big, effective, and ineffective companies, respectively. More features are presented in Supplementary Materials (see Section S4).
(a) Functional users. (b) Functional communications. (c) Functional clustering. (d) Functional density. (e) Social users. (f ) Social
communications. (g) Social clustering. (h) Social density. (i) Score.
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plants and determined the network patterns that distinguish
both types of interactions and affect team efficacy, in terms of
the timely completion of work orders.We found that functional
communication networks are asymmetrical and social-media-
style communication networks are segregated by job title. We
showed that efficacy is negatively associated with the number of
functional communications but positively associated with the
density of social communication networks.+is shows that,
beyond the volume of communications, the complexity of
interactions matters for improving performance.

Effective industrial-management software is critical to
enterprise performance. Among the enterprises we analyzed,
those with more functional communications performed
worse than others, which had a combination of less func-
tional communication together with an increased density of
social communications. While functional and structured
communications support the organization, it is important to
identify that newer and easier means to communicate with
workers, and workers to communicate with one another,
increase efficacy and improve overall performance.
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Figure S1: complementary cumulative distribution function
(CCDF) of companies’ life-span measured in months. Table
S1: correlation coefficients of functional and social com-
munication average network features with the average ef-
ficacy score. Figure S2: visualization of functional
communication networks from all enterprises. Figure S3:
adjacency matrices of functional communication networks
from all enterprises. Figure S4: visualization of social
communication networks from all enterprises. Figure S5:
adjacency matrices of social communication networks from
all enterprises. Figure S6: distribution of the efficacy scores
for all enterprises. Lower scores indicate better efficacy.
Figure S7: principal component analysis (PCA) of enter-
prises based on functional and social communication
monthly network features including the corresponding ef-
ficacy score. (Supplementary Materials)
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